Combination of Partial Least Squares regression and Design of Experiments to model the retention of pharmaceuticals in Supercritical Fluid Chromatography
[en] This work presents a first attempt to establish a model of the retention behaviour for pharmaceutical compounds in gradient mode SFC. For this purpose, multivariate statistics were applied on the basis of data gathered with the Design of Experiment (DoE) methodology. It permitted to build optimally the experiments needed, and served as a basis for providing relevant physicochemical interpretation of the effects observed. Data gathered over a broad experimental domain enabled the establishment of well-fit linear models of the retention of the individual compounds in presence of methanol as co-solvent. These models also allowed the appreciation of the impact of each experimental parameter and their factorial combinations. This approach was carried out with two organic modifiers (i.e. methanol and ethanol) and provided comparable results. Therefore, it demonstrates the feasibility to model retention in gradient mode SFC for individual compounds as a function of the experimental conditions. This approach also permitted to highlight the predominant effect of some parameters (e.g. gradient slope and pressure) on the retention of compounds.
Because building of individual models of retention was possible, the next step considered the estab- lishment of a global model of the retention to predict the behaviour of given compounds on the basis of, on the one side, the physicochemical descriptors of the compounds (e.g. Linear Solvation Energy Relationship (LSER) descriptors) and, on the other side, of the experimental conditions. This global model was established by means of partial least squares regression for the selected compounds, in an experimental domain defined by the Design of Experiment (DoE) methodology. Assessment of the model’s predic- tive capabilities revealed satisfactory agreement between predicted and actual retention (i.e. R2 = 0.942, slope = 1.004) of the assessed compounds, which is unprecedented in the field.
Research Center/Unit :
CIRM - Centre Interdisciplinaire de Recherche sur le Médicament - ULiège
Disciplines :
Pharmacy, pharmacology & toxicology Chemistry
Author, co-author :
Andri, Bertyl ; Université de Liège > Département de pharmacie > Chimie analytique
Dispas, Amandine ; Université de Liège > Département de pharmacie > Chimie analytique
Hubert, Philippe ; Université de Liège > Département de pharmacie > Chimie analytique
Sassiat, Patrick; ESPCI - Paris > CBI > LSABM - CNRS - UMR 8231
Al Bakain, Ramia; The University of Jordan > Department of Chemistry > Faculty of Science
Thiebaut, didier; ESPCI - Paris > CBI > LSABM - CNRS - UMR 8231
Vial, Jerome; ESPCI - Paris > CBI > LSABM - CNRS - UMR 8231
Language :
English
Title :
Combination of Partial Least Squares regression and Design of Experiments to model the retention of pharmaceuticals in Supercritical Fluid Chromatography
Publication date :
2017
Journal title :
Journal of Chromatography. A
ISSN :
0021-9673
eISSN :
1873-3778
Publisher :
Elsevier Science, Amsterdam, Netherlands
Special issue title :
Selected paper from 31st International Symposium on Chromatography (ISC2016), 28 August - 1 September 2016, Cork, Ireland.
[1] Saito, M., History of supercritical fluid chromatography: instrumental development. J. Biosci. Bioeng. 115 (2013), 590–599, 10.1016/j.jbiosc.2012.12.008.
[2] Lesellier, E., West, C., The many faces of packed column supercritical fluid chromatography – a critical review. J. Chromatogr. A 1382 (2015), 2–46, 10.1016/j.chroma.2014.12.083.
[3] Huber, L., Qualification and Validation for Supercritical Fluid Chromatography. 2011, Agilent Technologies ( https://www.agilent.com/cs/library/primers/Public/5990-9148EN.pdf.).
[4] Huber, L., Good Laboratory Practice and Current Good Manufacturing Practice – A Primer. 2000, Agilent Technologies Deutschland GmbH ( https://www.agilent.com/cs/library/primers/Public/59886197.pdf.).
[5] Anton, K., Siffrin, C., Packed-column SFC in the pharmaceutical industry: cGMP aspects. Analusis 27 (1999), 691–700, 10.1051/analusis:1999270691.
[6] Hicks, M.B., Regalado, E.L., Tan, F., Gong, X., Welch, C.J., Supercritical fluid chromatography for GMP analysis in support of pharmaceutical development and manufacturing activities. J. Pharm. Biomed. Anal. 117 (2016), 316–324, 10.1016/j.jpba.2015.09.014.
[7] Sun, J., Critical attributes and technical challenges of successful SFC instrument qualification. Am. Pharm. Rev. 14 (2011), 79–83.
[8] Andri, B., Dispas, A., Marini, R.D., Hubert, P., Overview of the analytical lifecycle of supercritical fluid chromatography methods. AJAC 07 (2016), 75–91, 10.4236/ajac.2016.71008.
[9] Grand-Guillaume Perrenoud, A., Veuthey, J.L., Guillarme, D., The use of columns packed with sub-2 μm particles in supercritical fluid chromatography. Trends Anal. Chem. 63 (2014), 44–54, 10.1016/j.trac.2014.06.023.
[10] Tarafder, A., Metamorphosis of supercritical fluid chromatography to SFC: an overview. Trends Anal. Chem. 81 (2016), 3–10, 10.1016/j.trac.2016.01.002.
[11] Novakova, L., Grand-Guillaume Perrenoud, A., Nicoli, R., Saugy, M., Veuthey, J.L., Guillarme, D., Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. I: Investigation of mobile phase and MS conditions. Anal. Chim. Acta 853 (2015), 637–646, 10.1016/j.aca.2014.10.004.
[12] Novakova, L., Rentsch, M., Grand-Guillaume Perrenoud, A., Nicoli, R., Saugy, M., Veuthey, J., et al. Ultra high performance supercritical fluid chromatography coupled with tandem mass spectrometry for screening of doping agents. II: Analysis of biological samples. Anal. Chim. Acta 853 (2015), 647–659, 10.1016/j.aca.2014.10.007.
[13] Bijttebier, S., D'Hondt, E., Noten, B., Hermans, N., Apers, S., Exarchou, V., et al. Automated analytical standard production with supercritical fluid chromatography for the quantification of bioactive C17-polyacetylenes: a case study on food processing waste. Food Chem. 165 (2014), 371–378, 10.1016/j.foodchem.2014.05.093.
[14] Viñas, P., Bravo-Bravo, M., López-García, I., Hernández-Córdoba, M., Dispersive liquid-liquid microextraction for the determination of vitamins D and K in foods by liquid chromatography with diode-array and atmospheric pressure chemical ionization-mass spectrometry detection. Talanta 115 (2013), 806–813, 10.1016/j.talanta.2013.06.050.
[15] Ishibashi, M., Izumi, Y., Sakai, M., Ando, T., Fukusaki, E., Bamba, T., High-throughput simultaneous analysis of pesticides by supercritical fluid chromatography coupled with high-resolution mass spectrometry. J. Agric. Food Chem. 63 (2015), 4457–4463, 10.1021/jf5056248.
[16] Dutriez, T., Thiébaut, D., Courtiade, M., Dulot, H., Bertoncini, F., Hennion, M.C., Application to SFC-GC × GC to heavy petroleum fractions analysis. Fuel 104 (2013), 583–592, 10.1016/j.fuel.2012.04.048.
[17] Desfontaine, V., Guillarme, D., Francotte, E., Novakova, L., Supercritical fluid chromatography in pharmaceutical analysis. J. Pharm. Biomed. Anal. 113 (2015), 56–71, 10.1016/j.jpba.2015.03.007.
[18] Kalíková, K., Šlechtová, T., Vozka, J., Tesařová, E., Supercritical fluid chromatography as a tool for enantioselective separation; a review. Anal. Chim. Acta 821 (2014), 1–33, 10.1016/j.aca.2014.02.036.
[19] Lísa, M., Holčapek, M., High-throughput and comprehensive lipidomic analysis using ultrahigh-performance supercritical fluid chromatography–mass spectrometry. Anal. Chem. 87 (2015), 7187–7195, 10.1021/acs.analchem.5b01054.
[20] Zhou, Y., Du, Z., Zhang, Y., Simultaneous determination of 17 disperse dyes in textile by ultra-high performance supercritical fluid chromatography combined with tandem mass spectrometry. Talanta 127 (2014), 108–115, 10.1016/j.talanta.2014.03.055.
[21] Heaton, D.M., Bartle, K.D., Clifford, A.A., Klee, M.S., Berger, T.A., Retention prediction based on molecular interactions in packed-column supercritical fluid chromatography. Anal. Chem. 66 (1994), 4253–4257, 10.1021/ac00095a021.
[22] West, C., Ogden, J., Lesellier, E., Possibility of predicting separations in supercritical fluid chromatography with the solvation parameter model. J. Chromatogr. A 1216 (2009), 5600–5607, 10.1016/j.chroma.2009.05.059.
[23] Tyteca, E., Desfontaine, V., Desmet, G., Guillarme, D., Possibilities of retention modeling and computer assisted method development in SFC. J. Chromatogr. A, 2015, 1–33, 10.1016/j.chroma.2014.12.077.
[24] Leśko, M., Kaczmarski, K., Poe, D.P., Modelling of retention in analytical supercritical fluid chromatography for CO2-methanol mobile phase. J. Chromatogr. A 1305 (2013), 285–292, 10.1016/j.chroma.2013.06.069.
[26] Box, G.E.P., Hunter, J.S., Hunter, W.G., Statistics for Experimenters: Design, Innovation, and Discovery. 2005, Wiley.
[27] Grand-Guillaume Perrenoud, A., Veuthey, J.L., Guillarme, D., Coupling state-of-the-art supercritical fluid chromatography and mass spectrometry: FROM hyphenation interface optimization to high-sensitivity analysis of pharmaceutical compounds. J. Chromatogr. A 1339 (2014), 174–184, 10.1016/j.chroma.2014.03.006.
[28] Dispas, A., Lebrun, P., Sassiat, P.R., Ziemons, E., Thiébaut, D., Vial, J., et al. Innovative green supercritical fluid chromatography development for the determination of polar compounds. J. Chromatogr. A 1256 (2012), 253–260, 10.1016/j.chroma.2012.07.043.
[29] Dispas, A., Lebrun, P., Andri, B., Rozet, E., Hubert, P., Robust method optimization strategy-a useful tool for method transfer: the case of SFC. J. Pharm. Biomed. Anal. 88 (2014), 519–524, 10.1016/j.jpba.2013.09.030.
[30] M'Hamdi, R., Thiébaut, D., Caude, M., Packed column SFC of gas oils. Part II: experimental design optimization of the group-type analysis using CO2-SF6 as the mobile phase. J. High Res. Chromatogr., 21, 1998, 10.1002/(SICI)1521-4168(19980201)21:2<94:AID-JHRC94>3.0.CO;2-9.
[31] Nizery, D., Thiébaut, D., Caude, M., Rosset, R., Lafosse, M., Dreux, M., Improved evaporative light-scattering detection for supercritical fluid chromatography with carbon dioxide-methanol mobile phases. J. Chromatogr. A 467 (1989), 49–60, 10.1016/S0021-9673(01)93951-2.
[32] Li, J.-R., Li, M., Xia, B., Ding, L.-S., Xu, H.-X., Zhou, Y., Efficient optimization of ultra-high- performance supercritical fluid chromatographic separation of Rosa sericeaby response surface methodology. J. Sep. Sci. 36 (2013), 2114–2120, 10.1002/jssc.201300289.
[33] Kaul, N., Agrawal, H., Paradkar, A.R., Mahadik, K.R., Effect of system variables involved in packed column SFC of nevirapine as model analyte using response surface methodology: application to retention thermodynamics, solute transfer kinetic study and binary diffusion coefficient determination. J. Biochem. Biophys. Methods 64 (2005), 121–141, 10.1016/j.jbbm.2005.06.004.
[34] Ibanez, E., Tabera, J., Reglero, G., Herraiz, M., Optimization of fat-soluble vitamin separation by supercritical fluid chromatography. Chromatographia 40 (1995), 448–452, 10.1007/BF02269911.
[35] Végh, K., Alberti, Á., Riethmüller, E., Tóth, A., Béni, S., Kéry, Á., Supercritical fluid extraction and convergence chromatographic determination of parthenolide in Tanacetum parthenium L.: experimental design, modeling and optimization. J. Supercrit. Fluids 95 (2014), 84–91, 10.1016/j.supflu.2014.07.029.
[36] Kumar, N., Bansal, A., Sarma, G.S., Rawal, R.K., Chemometrics tools used in analytical chemistry—an overview. Talanta 123 (2014), 186–199, 10.1016/j.talanta.2014.02.003.
[37] Zissimos, A.M., Abraham, M.H., Du, C.M., Valko, K., Bevan, C., Reynolds, D., et al. Calculation of Abraham descriptors from experimental data from seven HPLC systems; evaluation of five different methods of calculation. J. Chem. Soc. Perkin Trans. 2, 2002, 2001–2010, 10.1039/b206927j.
[38] Abraham, M.H., Ibrahim, A., Zissimos, A.M., Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037 (2004), 29–47, 10.1016/j.chroma.2003.12.004.
[39] Abraham, M.H., Acree, W.E. Jr., Equations for the transfer of neutral molecules and ionic species from water to organic phases. J. Org. Chem. 75 (2010), 1006–1015, 10.1021/jo902388n.
[40] Abraham, M.H., Acree, W.E., Descriptors for ions and ion-pairs for use in linear free energy relationships. J. Chromatogr. A 1430 (2016), 2–14, 10.1016/j.chroma.2015.07.023.
[41] Galea, C., West, C., Mangelings, D., Vander Heyden, Y., Is the solvation parameter model or its adaptations adequate to account for ionic interactions when characterizing stationary phases for drug impurity profiling with supercritical fluid chromatography?. Anal. Chim. Acta 924 (2016), 9–20, 10.1016/j.aca.2016.04.014.
[42] West, C., Lesellier, E., Effects of mobile phase composition on retention and selectivity in achiral supercritical fluid chromatography. J. Chromatogr. A 1302 (2013), 152–162, 10.1016/j.chroma.2013.06.003.
[43] Lesellier, E., West, C., Description and comparison of chromatographic tests and chemometric methods for packed column classification. J. Chromatogr. A 1158 (2007), 329–360, 10.1016/j.chroma.2007.03.122.
[44] West, C., Lesellier, E., Chemometric methods to classify stationary phases for achiral packed column supercritical fluid chromatography. J. Chemom. 26 (2012), 52–65, 10.1002/cem.1414.
[45] West, C., Lesellier, E., A unified classification of stationary phases for packed column supercritical fluid chromatography. J. Chromatogr. A 1191 (2008), 21–39, 10.1016/j.chroma.2008.02.108.
[46] Bui, H., Masquelin, T., Perun, T., Castle, T., Dage, J., Kuo, M.-S., Investigation of retention behavior of drug molecules in supercritical fluid chromatography using linear solvation energy relationships. J. Chromatogr. A 1206 (2008), 186–195, 10.1016/j.chroma.2008.08.050.
[48] Ziegel, E.R., Handbook of chemometrics and qualimetrics, part B. Technometrics, 42, 2000, 10.1080/00401706.2000.10486023.
[49] B. Andri, A. Dispas, P. Hubert, P.R. Sassiat, R. Al Bakain, D. Thiébaut, et al., manuscript under preparation (2016).
[50] Wen, D., Olesik, S.V., Characterization of pH in liquid mixtures of methanol/H 2O/CO 2. Anal. Chem. 72 (2000), 475–480, 10.1021/ac9905219.
[51] Zheng, J., Taylor, L., Pinkston, J.D., Elution of cationic species with/without ion pair reagents from polar stationary phases via SFC. Chromatographia 63 (2006), 267–276, 10.1365/s10337-006-0731-z.
[52] Poole, C.F., Poole, S.K., Foundations of retention in partition chromatography. J. Chromatogr. A 1216 (2009), 1530–1550, 10.1016/j.chroma.2008.10.092.
[53] Villermet, A., Thiébaut, D., Caude, M., Rosset, R., Packed column supercritical fluid chromatography with carbon dioxide-polar modifiers: influence of carbon dioxide density on retention. J. Chromatogr. A 557 (1991), 85–97, 10.1016/s0021-9673(01)87124-7.
[54] Poole, C.F., Poole, S.K., Column selectivity from the perspective of the solvation parameter model. J. Chromatogr. A 965 (2002), 263–299.