Article (Scientific journals)
Local ensemble assimilation scheme with global constraints and conservation
Barth, Alexander; Yan, Yajing; Alvera Azcarate, Aida et al.
2016In Ocean Dynamics, 66, p. 1651-1664
Peer Reviewed verified by ORBi
 

Files


Full Text
locens.pdf
Author preprint (1.23 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Data assimilation; Ensemble Kalman filter; Localization; Covariance modeling; Conservation
Abstract :
[en] Ensemble assimilation schemes applied in their original, global formulation respect linear conservation properties if the ensemble perturbations are set up accordingly. For realistic ocean systems, only a relatively small number of ensemble members can be calculated. A localization of the ensemble increment is therefore necessary to filter out spurious long-range correlations. The conservation of the global properties will be lost if the assimilation is performed locally, since the conservation requires a coupling between all model grid points which is removed by the localization. The distribution of ocean observations is often highly inhomogeneous. Systematic errors of the observed parts of the ocean state can lead to spurious adjustment of the non-observed parts via data assimilation and thus to a spurious increase or decrease in long-term simulations of global properties which should be conserved. In this paper, we propose a local assimilation scheme (with different variants and assumptions) which can satisfy global conservation properties. The proposed scheme can also be used for non-local observation operators. Different variants of the proposed scheme are tested in an idealized model and compared to the traditional covariance localization with an ad-hoc step enforcing conservation. It is shown that the inclusion of the conservation property reduces the total RMS error and that the presented stochastic and deterministic schemes avoiding error space rotation provide better results than the traditional covariance localization.
Research Center/Unit :
GHER/MARE/AGO
Disciplines :
Earth sciences & physical geography
Author, co-author :
Barth, Alexander  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Yan, Yajing ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Alvera Azcarate, Aida  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Beckers, Jean-Marie  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > GeoHydrodynamics and Environment Research (GHER)
Language :
English
Title :
Local ensemble assimilation scheme with global constraints and conservation
Publication date :
2016
Journal title :
Ocean Dynamics
ISSN :
1616-7341
eISSN :
1616-7228
Publisher :
Springer Science & Business Media B.V., Heidelberg, Germany
Volume :
66
Pages :
1651-1664
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
European Projects :
FP7 - 283580 - SANGOMA - Stochastic Assimilation for the Next Generation Ocean Model Applications
Name of the research project :
Sangoma, PREDANTAR
Funders :
BELSPO - SPP Politique scientifique - Service Public Fédéral de Programmation Politique scientifique
F.R.S.-FNRS - Fonds de la Recherche Scientifique
UE - Union Européenne
CE - Commission Européenne
Available on ORBi :
since 04 January 2017

Statistics


Number of views
120 (5 by ULiège)
Number of downloads
167 (1 by ULiège)

Scopus citations®
 
3
Scopus citations®
without self-citations
2
OpenCitations
 
4
OpenAlex citations
 
5

Bibliography


Similar publications



Contact ORBi