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Abstract5

Ensemble assimilation schemes applied in their original, global formulation re-6

spect linear conservation properties if the ensemble perturbations are setup ac-7

cordingly. For realistic ocean systems, only a relatively small number of ensemble8

members can be calculated. A localization of the ensemble increment is therefore9

necessary to filter out spurious long-range correlations. The conservation of the10

global properties will be lost if the assimilation is performed locally, since the con-11

servation requires a coupling between all model grid points which is removed by the12

localization. The distribution of ocean observations is often highly inhomogeneous.13

Systematic errors of the observed parts of the ocean state can lead to spurious14

adjustment of the non-observed parts via data assimilation and thus to a spurious15

increase or decrease in long-term simulations of global properties which should be16

conserved. In this paper, we propose a local assimilation scheme (with different17

variants and assumptions) which can satisfy global conservation properties. The18

proposed scheme can also be used for non-local observation operators. Different19

variants of the proposed scheme are tested in an idealized model and compared to20

the traditional covariance localization with an ad-hoc step enforcing conservation.21
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It is shown that the inclusion of the conservation property reduces the total RMS22

error and that the presented stochastic and deterministic schemes avoiding error23

space rotation provide better results than the traditional covariance localization.24

1 Introduction25

Conservation laws are the central elements in numerical ocean modelling and for under-26

standing the ocean dynamics in general. Key ocean variables such as mass, heat, salt and27

other chemical components are subject to such conservation laws. These fundamental28

laws allow to describe the exchange of these ocean properties and are instrumental for29

deriving a conceptual overview of transports in the ocean. When ocean models are devel-30

oped, a significant effort is placed in maintaining the conservation laws (e.g. Wang et al,31

2013). The ability to respect the conservation has been a strong argument in favor of32

numerical discretization methods like finite volumes (e.g. Shchepetkin and McWilliams,33

2005; Madec, 2014) and a certain class of finite elements schemes (e.g. White et al, 2008;34

Danilov, 2013). On long time scales (several years), conservative numerical models are35

also crucial for assessing changes of physical properties, such as the total heat budget.36

Global assimilation schemes can naturally satisfy global linear constraints and preserve37

linear conservation for suitably chosen perturbations (Janjić et al, 2014). For example,38

the total amount of heat is conserved by the assimilation if the temperature error in-39

troduced at every time step integrated over the whole domain is zero. When the model40

forecast error is only related to the uncertainty of the heat flux boundary conditions, this41

would mean that the integral of the flux over all open boundaries is the same for every42

ensemble member.43

44

Nonlinear constraints can sometimes be transformed into linear constraints by a care-45

ful transformation of the model variables. For example, if the model variables include46
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sea ice concentration ci and sea ice height hi, then the total amount of sea ice47

∫
Ω

cihi dx = const (1)

is conserved without ice melting and ice formation. This conservation property is non-48

linear if a state vector includes ci and hi, but becomes linear if the state vector includes49

cihi and ci (or hi). For sea ice concentration and sea ice height, there is still the additional50

difficulty of enforcing positive quantities. But this issue is out of the scope of the present51

study. An approach able to conserve mass while ensuring positive quantities is discussed52

in Janjić et al (2014). In this method, a quadratic programming problem is solved for53

every ensemble member constrained by mass conservation and requiring positive values.54

55

The need for localization arises from the fact that for realistic systems only a relatively56

small number of ensemble members (∼ 10− 1000) can be used in general. A localization57

of the ensemble increment is necessary to filter out spurious long-range correlations (e.g.58

Whitaker and Hamill, 2002). However, after localization, global conservation properties59

of the analysis schemes are lost since the conservation requires a non-local basin-wide60

coupling of all model grid points which are filtered out by the localization.61

One can distinguish two different localization approaches (Janjić et al, 2011; Nerger62

et al, 2012a): domain localization (possibly including observation localization) and co-63

variance localization.64

• In domain localization, the state vector is decomposed into sub-domains (e.g. single65

grid point or vertical column) where the assimilation is performed independently.66

Such algorithms are easily applied to parallel computers (Keppenne and Rienecker,67

2003; Nerger and Hiller, 2013). To avoid discontinuities in the analysis field, this68

approach is combined with the observation localization (Brankart et al, 2003; Barth69

et al, 2007; Hunt et al, 2007). The weight of distant observations (relative to the70

part of the state vector to be updated) is gradually decreased by increasing the71
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error variance (observation localization or R-localization).72

• For covariance localization, every single observation point is assimilated sequentially73

and the correction is filtered by a localization function. Because of its sequential74

nature, this algorithm is less suitable for parallel processing than the domain lo-75

calization. This approach operates on the error covariance matrix P and it is76

sometimes called P-localization.77

We propose an assimilation scheme which is local but can satisfy global conservation78

properties and can use a non-local observation operator. Both properties are indeed79

linked since one can introduce the global conservation as a weak constraint by using a80

global observation operator. The conserved property becomes thus an observed value81

(Pan and Wood, 2006).82

The presented ensemble schemes take an ensemble as input (model forecast) and pro-83

duce an ensemble as output (analysis). One recovers the original Kalman Filter analysis if84

the covariance does not have spurious long-range correlations. Two variants are proposed85

depending on whether it is required that the forecast ensemble is equal to the analysis86

ensemble or not, if R tends to infinity.87

In fact, one should distinguish the cases (i) where the total amount of a given quan-88

tity is conserved but unknown and (ii) where the total amount is conserved and known89

without uncertainty (or with negligible uncertainty). The proposed schemes deal with90

the latter case.91

92

Improving the localization schemes in the Ensemble Kalman Filter (EnKF) is an active93

field of research. Relatively simple analytic functions (e.g. Gaspari and Cohn, 1999) are94

often used to suppress spurious long-range correlations, and some studies (Bishop and95

Hodyss, 2007; Anderson, 2007; Bishop and Hodyss, 2011) highlight the benefit of using96

flow adaptive localization functions. Different ways to generate such adaptive localization97

functions have been proposed, for instance, by raising the correlation function to a given98
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power (Bishop and Hodyss, 2007, 2009a,b), by deriving the localization function using a99

smoothed-ensemble (Bishop and Hodyss, 2011) or by using a hierarchical set of ensembles100

(Anderson, 2007).101

A difficulty similar to the conservation property is the non-local observation operator.102

In fact, one can represent the globally conserved quantity as a measured variable in the103

assimilation step. For non-local observation operators, Zhu et al (2011) have shown that104

by using a square root representation of the localization function, one can also derive a105

local assimilation scheme.106

Localization can also have negative consequences on the dynamical balance (Kepert,107

2009; Greybush et al, 2011). The preservation of the dynamical balance is in fact a related108

issue. In the same way that a conservative local analysis scheme should not change the109

state vector along a given direction in the error space (corresponding to the budget of110

the conserved quantity), one can require that the analysis increment does not increase111

substantially the contribution to the error sub-space defined by e.g. the ageostrohpic flow112

components.113

This paper is organized as follows: section 2 shows the general approach to reconcile114

the requirements of the local assimilation method and the global conservation constraints.115

Different variants of the method are derived in this section. Implementation considera-116

tions are discussed in section 3 with a particular emphasis on models with a large state117

vector. Different variants of the proposed scheme are tested in section 4 with a univari-118

ate model and a multivariate model respectively. Conclusions and perspectives follow in119

section 5.120

2 Method121

The proposed scheme relies on a stochastic ensemble forecast122

x
(k)
n+1 = Mx(k)

n + η(k)n , (2)
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where n is the time index of the observations, k the ensemble index (1 ≤ k ≤ N),123

x
(k)
n is the state vector, M represents the model and η

(k)
n is the model error. We use the124

notation of Ide et al (1995) where it is appropriate. In the following, we will drop the125

time index n if there is no ambiguity. As the conservation properties are expressed as126

volume integral, such a conservation can be written as a vector product using the state127

vector x:128

hTx = const. (3)

Such an expression is directly obtained by discretizing the volume integral. The el-129

ements of h are areas or volumes of the corresponding grid point or zero for model130

variables not involved in the conservation law. We impose also that the vector h is nor-131

malized (hTh = 1). Here we limit the formalism to the case where a single conservation132

property has to be maintained, but the equations can be generalized to multiple conser-133

vation properties where h becomes a matrix. Further, we assume that the model itself is134

conservative:135

hTMx = hTx for all x. (4)

In fact, h is an eigenvector of the adjoint of the model with an eigenvalue of 1.136

The stochastic perturbations should not alter the amount of the conserved quantity as137

mentioned before:138

hTη = 0. (5)

Also, we require that all ensemble members have the same amount of the conserved139

quantity initially:140

hTx
(k)
0 = c for all k. (6)
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The ensemble covariance P (n × n) of this ensemble can be written in terms of its141

square root matrices142

P = SST , (7)

where S is a matrix of size n×N − 1 derived as in Hoteit et al (2002).143

Given the way in which the ensemble is constructed, the uncertainty of the conserved144

property hTx is zero.145

hTPh = 0 (8)

For a localized ensemble covariance, a function (or discretized as a matrix) ρ with146

compact support is introduced. Spurious long-range correlations are filtered out (Hamill147

et al, 2001; Houtekamer and Mitchell, 2001) by using an element-wise Schur product.148

P′ is the localized ensemble error covariance.149

P′ = ρ ◦P (9)

The Schur product theorem guarantees that if the localization matrix ρ is positive150

semi-definite, then the product is positive semi-definite.151

The localization functions substantially increase the rank of the covariance matrix152

by reducing the spatial coupling between the model grid points. But at the same time,153

any global conservation property is lost. In cases where the global conservation should154

be maintained, we impose a constraint on the analysis increment (for instance that the155

increment does not create heat or salt).156

hT (xa − xf ) = 0 (10)

From equations (4), (5) and (6), it follows that every ensemble member perturbation157
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satisfies this constraint158

hT (x(k) − x̄) = 0, (11)

where x̄ is the ensemble mean. The error covariance is modified so that this constraint159

can be satisfied (Janjić et al, 2012).160

Pc = (I− hhT )P′(I− hhT ) (12)

Equation (10) defines the subspace of acceptable corrections, i.e. a correction xa−xf
161

must be orthogonal to h. Formally, one can derive the equation (12) from equation (10)162

by removing from every eigenvector of P′ the contribution parallel to the vector h.163

We limit the following discussion to the case where h represents a conservation prop-164

erty, but one can also imagine to apply the current approach to enforce a dynamical165

balance as localization can also negatively affect the balance between the variable of166

the model state (Lorenc, 2003; Kepert, 2009). For instance, a geostrophic balance can167

be used to define the rows of a matrix Hgeo corresponding to a state vector composed,168

among others, of sea surface height, temperature, salinity and horizontal currents. In this169

case, the operator I − HgeoH
T
geo would remove ageostrophic components from the error170

covariance.171

The Kalman gain based on the modified covariance is then given by172

K = PcH
T
(
HPcH

T +R
)−1

. (13)

The product ofK and a given vector must be computed without forming explicitly the173

matrix Pc (which has a size of n× n). This is achieved by implementing the covariance174

matrices as operators (section 3) and by using the iterative conjugate gradient algorithm175

which solves a system of the form:176

Az = b, (14)
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whereA is a symmetric positive-definite matrix, b is a given vectors in the observation177

space and z is a to be determined vector in the observation space. Here A is equal178

to HPcH
T + R. For large systems, a suitable preconditioning is necessary to achieve179

an accurate result in an affordable number of iterations. Possible preconditioners are180

discussed in appendix A. Once the equation (14) is solved for a given vector z, the181

product Kb is obtained by182

Kb = PcH
Tz. (15)

The mean of the analysis ensemble xa can then be derived using the classical formu-183

lation:184

xa = xf +K(yo −Hxf ), (16)

where yo is the observation vector containing m elements. The product of K and185

the innovation vector requires solving a system of m linear equations using the conjugate186

gradient method, as described previously. To use this approach in an ensemble forecast,187

one needs to derive an algorithm which is based on an ensemble as input and derives an188

analysis ensemble using the observations.189

2.1 Stochastic analysis scheme190

A stochastic analysis (Burgers et al, 1998; Houtekamer and Mitchell, 1998; Evensen, 2007)191

scheme can be obtained by using perturbed observations yo(k) for every member of the192

ensemble xf (k). This approach is based on equations (16) and (12), which are also used193

in Janjić et al (2012, 2014):194

xa(k) = xf (k) +K(yo(k) −Hxf (k)). (17)

The presented approach is related to Janjić et al (2014), but it is not equivalent as195
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the latter allows also to maintain positive values and is based on quadratic programming196

which is not the case here.197

The perturbations in the observations must follow a Gaussian distribution with a198

covariance equal to R for consistency (Burgers et al, 1998). This approach requires199

solving N independent systems of size m×m. In the following, this technique is referred200

to as CLEnKF-Pert or LEnKF-Pert (if the conservation constraint is not used).201

2.2 Deterministic analysis scheme202

For small ensembles, a deterministic formulation is generally preferred to a stochastic203

scheme (e.g. Whitaker and Hamill, 2002; Nerger et al, 2005). In the following, we aim to204

derive a formulation without perturbed observations. Equation (17) can be rewritten as205

xa(k) = (I−KH)xf (k) +Kyo(k). (18)

As the ensemble member perturbations and the observation perturbations are inde-206

pendent, the error covariance matrix of xa is (for any matrix K)207

Pa = (I−KH)Pf (I−KH)T +KRKT , (19)

where Pf is the (exact) covariance matrix of xf , different from P which is its ensemble208

approximation. In general, the rank of Pa increases, and it may even be full for a localized209

prior ensemble error covariance matrix. It is necessary to find some approximation to210

represent such an error covariance matrix using an ensemble of model states. In order to211

find what kind of approximations lead to a useful scheme, we temporarily assume that212

Pf in equation (19) is SST (thus not filtering spurious long-range correlations) , but the213

Kalman gain still uses the localized error covariance. In this case, Pa can be written as214
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Pa =

[
(I−KH)S KR1/2

] [
(I−KH)S KR1/2

]T
. (20)

The first part of the expression in the brackets ((I−KH)S, N columns) corresponds215

to the model forecast error expressed as the forecast ensemble modified by the Kalman216

gain and the second part (KR1/2, m columns) represents the error increase due to the217

uncertainty in the observations. The latter N + m columns can be used to create an218

ensemble with appropriate covariance. Clearly the number of ensemble members should219

not increase in every analysis cycle. If very few observations are used, the expression220

in brackets can be reduced by using a singular value decomposition (SVD) and keeping221

only the leading singular vectors and singular values. However, for a large number of222

observations (e.g. satellite observations), this approach can be prohibitive. Otherwise,223

we can try to project the term due to uncertain observations into some error space. A224

reasonable choice is225

S′ = (I−KH)S, (21)

as this error space is derived from the dominant model forecast error modes (equation226

20). These error modes also satisfy the defined constraint:227

hTS′ = 0 since hTS = 0.

In general, the columns of S are not an orthogonal basis. A vector can be constrained228

to the subspace defined by the columns of S by multiplying the vector with the matrix229

S′ (S′TS′)−1
S′T . The covariance matrix Pa is then projected onto the subspace deter-230

mined by the columns of S. The projected matrix Pa
S′ and the full covariance matrix are231

related by232
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Pa
S′ = S′TPaS′ (22)

Pa = S′ (S′TS′)−1
Pa

S′

(
S′TS′)−1

S′T + contrib. in perp. space to be neglected.(23)

Using equation (19) and the conservative and localized error covariance matrix Pc,233

one obtains the following expression for Pa
S′ :234

Pa
S′ = (S′T − S′TKH)Pc(S

′T − S′TKH)T + S′TKRKTS′. (24)

The product KTS′ is also computed using the conjugate gradient algorithm.235

KTS′ =
(
HPcH

T +R
)−1

HPcS
′ (25)

Section 3 will describe in more detail how this can be done efficiently.236

Finally, one gets the following expression of a square root of the matrix Pa = SaSaT :237

Sa = S′ (S′TS′)−1
(Pa

S′)1/2, (26)

where (Pa
S′)1/2 is the principal square root of Pa

S′ which is unique and can be computed238

by an eigenvector decomposition.239

This approach requires solving 2(N − 1) systems of size m ×m for the error modes240

and one system for the ensemble mean. The N systems are in fact independent and can241

be distributed on a parallel machine.242

243

Based on the ensemble mean xa and the error modes Sa, one can reconstruct an244

ensemble. The procedure is explained in Hoteit et al (2002), but we choose not to use the245

optional random rotation matrix mentioned in this study, because it tended to degrade the246

results. We will refer to this technique as CLEnKF-Pc or LEnKF-Pc (if the conservation247
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constraint is not used).248

2.3 Deterministic analysis scheme avoiding rotation of the en-249

semble250

Even when the observation error variances are much larger than the model forecast error251

variances (and in the limit as R goes to infinity), the analysis ensemble is different from252

the forecast ensemble, even if the mean and covariance are unchanged. This is because253

Pa
S′ tends to STPcS, and the principal square root of this matrix introduces a rotation254

which should be avoided (Nerger et al, 2012b). Therefore, we want that Pa
S′ tends to the255

following:256

Pa
S′ → STSSTS, (27)

so that the principal square root of Pa
S′ tends to STS (because it is unique) and Sa

257

will tend to S. This can be achieved by modifying equation (24), so that this equation258

reads259

S′TPaS′ = S′TS′S′TS′ + S′TKRKTS′. (28)

If R tends to +∞, the Kalman gain tends to zero and equation (28) becomes260

Sa → S′ (S′TS′)−1
STS = S. (29)

and the analysis ensemble will be exactly the forecast ensemble. But it should be261

clear that this assimilation scheme requires an additional approximation. In the follow-262

ing experiments, we will test if this approximation (using the ensemble covariance in263

equation (28)) outweighs the benefit of avoiding an unnecessary rotation of the ensemble264

space. This technique will be referred to as CLEnKF-SST or LEnKF-SST (whether the265
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conservation constraint is not used).266

3 Implementation267

The localization function is implemented as a function returning the indices and values of268

the non-zero elements for a given row of the localization matrix ρ. A fast implementation269

of this routine is crucial for large implementations. For a regularly structured grid, it is270

possible to compute the indices close to a given point efficiently without iteration over all271

model grid points. For an unstructured grid, efficient algorithms have also been proposed272

(e.g. Löhner and Ambrosiano, 1990) whose cost depends essentially on the logarithm of273

the number of grid points.274

The matrices P′ and Pc are not implemented as n×n arrays, but as operators acting275

on a given vector x:276

P′x = (ρ ◦ SST )x.

To compute this product, one needs to leverage the fact that every row of the lo-277

calization matrix ρ has a relatively small number of nonzero elements (compared to its278

size n). For every element of the vector P′x, only the elements of SST are computed279

for which the corresponding of ρ is nonzero. The computation of the product P′x takes280

thus O(nnlocN) operations where nloc is the number of nonzero elements returned by281

the localization function used to build the localization matrix ρ. To compute the prod-282

uct of Pc and a given vector x, one needs to involve in addition the projection operator283

I−hhT . This is a fast operation which does not have any significant impact on the order284

of magnitude of the number of operations.285

At different stages of the algorithm (equations (21), (17), (25)), the following system286

needs to be solved for z for a given right-hand side vector b:287

[
H(I− hhT )P′(I− hhT )HT +R

]
z = b (30)
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We use the conjugate gradient algorithm which requires the repeated application of288

the matrix in brackets to a given vector. For simple expressions of the observation error289

covariance matrix, such as a diagonal matrix, a matrix decomposed in its square roots290

or a sum of a diagonal matrix and a product of square root matrix (Brankart et al,291

2009), efficient ways to handle the observation error covariance matrix exist. However,292

the application of the localized model error covariance matrix in the observation space to293

the vector z, might be more difficult to compute. By expanding this product, we obtain294

the following terms:295

HP′HTz−HhaTHTz−HahTHTz+HhhTahTHTz+Rz = b, (31)

where we can define and pre-compute the vector a = P′h. This vector corresponds296

to the covariance of the conserved quantity with all elements of the state vector (based297

on the localized covariance matrix).298

All terms of equation (31) can be computed in a straight-forward and efficient way,299

except the product of H(ρ ◦ SST )HT and a vector z. In some implementations of co-300

variance localization, this matrix is approximated by changing the order of operations301

and applying the localization in observation space (Hamill et al, 2001). However, if H is302

sparse, there is no need to compute all non-zero elements ρ ◦SST . In fact, it is sufficient303

to compute only those who are later multiplied by the non-zero values of H. The number304

of operations for a single vector increases thus only linearly with the number of obser-305

vations m and the number of nonzero elements returned by the localization functions306

(noted nloc).307

The number of operations of the overall method is determined by the number of itera-308

tions Niter necessary to reach convergence. As the conjugate gradient method has to be309

applied for all ensemble members, the total number of operations is O(nnlocN
2Niter +310

mN Niter +mnNiter) (including only terms proportional to Niter). Here we assumed the311
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favorable but common case of a diagonal observational error covariance matrix and that312

the observation operator represents an interpolation (which can thus be represented by313

a sparse matrix with an order of m nonzero elements).314

315

4 Results316

4.1 Assimilation setup317

The assimilation setup is based on a classical twin experiment using the Kuramoto-318

Sivashinsky equation (section 4.2) and a minimal model for sea ice and salinity with319

conservation (section 4.3). For all assimilation experiments, the localization length scale320

and inflation factors are varied to obtain the optimal values of these parameters as in321

Nerger et al (2012a). The inflation factor is constant over the domain and applied to the322

a posteriori error covariance.323

The following test cases are performed:324

• CL: standard covariance localization: observations are assimilated sequentially with325

the ETKF (Bishop et al, 2001; Nerger, 2015) and the correction is multiplied by a326

localization function.327

• CL-adj: The same as CL, but after the analysis, the budget is corrected with an328

adjustment step by adding or removing a spatially constant term to all model grid329

points.330

• LEnKF-pert: Localized EnKF using perturbed observations without conservation331

constraint (section 2.1, implementing equations (13) and (17) with Pc = P′).332

• CLEnKF-pert: Localized EnKF using perturbed observations with conservation333

constraint (section 2.1, implementing equations (13) and (17)).334
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• LEnKF-Pc: Localized EnKF variant “Pc” without conservation constraint (section335

2.2, implementing equations (13), (24) and (26) with Pc = P′).336

• CLEnKF-Pc: Localized EnKF variant “Pc” with conservation constraint (section337

2.2, implementing equations (13), (24) and (26)).338

• LEnKF-SST : Localized EnKF variant “SST” without conservation constraint (sec-339

tion 2.3, implementing equations (13), (28) and (26) with Pc = P′ ).340

• CLEnKF-SST : Localized EnKF variant “SST” with conservation constraint (sec-341

tion 2.3, implementing equations (13), (28) and (26)).342

4.2 Kuramoto-Sivashinsky equation343

We want to test the proposed assimilation scheme with a chaotic system which exhibits344

naturally a conserved quantity. This is the case of the Kuramoto-Sivashinsky system (e.g.345

Khellat and Vasegh, 2014) which is governed by the equation346

∂v

∂t
= −∂2v

∂x2
− ∂4v

∂x4
− v

∂v

∂x
, (32)

over a periodic domain Ω whose length is usually set to L = 32π. Figure 1 illustrates347

the solution of the Kuramoto-Sivashinsky system (without assimilation). By writing the348

previous equation in flux form, one can show that the quantity v integrated over the349

domain does not change over time:350

d

dt

∫
Ω

v dx = 0. (33)

This conservation property is used in the proposed assimilation scheme. The domain351

is discretised with 128 grid points. The time step is ∆t = 1/4 and the ETDRK4 discreti-352

sation scheme (Exponential Time Differencing fourth-order Runge-Kutta) is used (Cox353

and Matthews, 2002). The discretized model also respects the equation (33).354

The initial condition of the free-running simulation is given by355
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v(x) = cos
( x

16

)(
1 + sin

( x

16

))
. (34)

As localization function, a compactly supported 5th-order piece-wise rational function356

from Gaspari and Cohn (1999) is used and its expression is given by357

f(r) =


−1

4
r5 + 1

2
r4 + 5

8
r3 − 5

3
r2 + 1, if r ≤ 1

1
12
r5 − 1

2
r4 + 5

8
r3 + 5

3
r2 − 5r + 4− 2

3r
, if r ≤ 2

0, if r > 2,

(35)

where r is the distance scaled by a given length-scale L.358
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Figure 1: Solution of the Kuramoto-Sivashinsky equation (without assimilation).

Every 8th grid point is observed (with an error variance of 0.1) at every 10 model359

time steps. The model is run in total for 1000 time steps and the experiment is repeated360

1000 times. The RMS errors relative to the true solution are averaged. As the system361
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has only 128 grid points, a relatively small ensemble of 30 members is used. The error in362

the initial condition is generated by363

x
(k)
0 = x

(k)
free + (I− hhT )Pi

1/2z(k), (36)

where Pi is a diagonal matrix with diagonal elements equal to 0.1. Therefore, the364

added perturbation does not modify the total budget. A similar perturbation is generated365

for the “truth” run and for the error introduced at every time step (with a variance of366

10−7 before its spatial average is subtracted).367

368

Figure 2 illustrates the results of the model state vector at the location x = 0369

(where observations are available). The results correspond to the assimilation method370

“CLENKF-Pc” with an inflation factor of 1.05 and a localization length scale of 25 grid371

points. The blue curve corresponds to the true model solution and the black line repre-372

sents a free model run (with perturbed initial conditions and model noise added at every373

time step). From the true model solution, observations are extracted and perturbed374

(green dots) and assimilated in the ensemble model run. The black segments on Figure 2375

correspond to the ensemble forecast where the starting point is the analysis and the end376

point is the forecast of the next analysis cycle. In most circumstances the ensemble can377

track the true model state reasonably well. The largest discrepancy between the ensemble378

mean and the true state is observed at time step 209. The individual ensemble members379

(in light-gray) strongly diverge at this time instance, which reflects a low predictability.380

It is not expected that the ensemble converges to the true solution because the model381

dynamics are chaotic and because random perturbations are added at every time step.382
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Figure 2: Example of the twin experiment simulation at x = 0 as a function of time (one
time unit corresponds to 4 time steps) using the assimilation method “CLENKF-Pc”
with an inflation factor of 1.05 and a localization length scale of 25 grid points.
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Figure 3: RMS error between the model run with assimilation and the true solution for
different schemes and parameters. The x-axis represents the localization length-scale and
the y-axis the inflation factor.
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Table 1: The lowest RMS error for different assimilation schemes and the corresponding
parameters. The last column represents the standard deviation of the RMS error averaged
over all tests. It is computed as the standard deviation of all RMS errors divided by the
square root of the number of tests. The lowest RMS error among the different schemes
is in bold.

L inflation mean RMS std of mean RMS

CL 21 1.03 0.71375 0.00271
CL-adj 21 1.03 0.68624 0.00268
LEnKF-pert 21 1.07 0.66267 0.00570
CLEnKF-pert 21 1.07 0.63493 0.00609
LEnKF Pc 25 1.05 0.64253 0.00364
CLEnKF Pc 25 1.05 0.59395 0.00386
LEnKF SST 25 1.05 0.64078 0.00513
CLEnKF SST 25 1.05 0.59953 0.00452

Figure 3 shows the RMS error model run with assimilation and the true solution for383

different schemes and different values of the localization length-scale and the inflation384

factor. White areas in Figure 3 with standard covariance localization represent model385

parameters where the system becomes unstable. The optimal parameter configuration386

is reported in Table 1 with the corresponding RMS error. Covariance localization with387

the “ad-hoc” adjustment (CL-adj) provides only very small improvement compared to388

the classical covariance localization scheme (CL). In both cases, the optimal correlation389

length and inflation factor are 21 grid points and 1.03 respectively. The resulting RMS390

error of these experiments is more sensitive to changes in the inflation factor than to391

the localization length-scale (for the range of tested parameters). A good choice of the392

inflation factor is thus quite important as the “valley” (panel CL and CL-adj of Figure393

3) is relatively narrow. One obtains consistently better results when the conservation394

property is explicitly used than without this constraint.395

The new local assimilation schemes provide a lower RMS error in these twin experi-396

ments. However, to reach the optimal RMS error, a slightly larger inflation factor than in397

the classical scheme was necessary. For an inflation equal to 1.03, the stochastic schemes398

provided indeed worse results than the ETKF with covariance localization and adjust-399

ment (CL-adj). We attribute this to the fact that for relatively small ensemble sizes, the400
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statistical fluctuations are large and that a deterministic scheme provides better results.401

However, even for an inflation equal to 1.03 the new deterministic scheme provides lower402

RMS errors than in the experiment CL-adj.403

Overall, the performance of the four new schemes (LEnKF-Pc, CLEnKF-Pc, LEnKF-404

SST , CLEnKF-SST ) is relatively similar. It is interesting to note that the sensitivity of405

the RMS error relative to the inflation factor is much lower compared to the cases CL406

and CL-adj. In fact, one would even obtain acceptable results without any inflation at407

all for the schemes LEnKF Pc and CLEnKF Pc with the present model.408

The lowest error was obtained with the scheme CLEnKFPc enforcing the conservation409

and using the localized error covariance to derive the updated ensemble members.410

Since the serial observation processing can have a detrimental effect on the results411

(Nerger, 2015), we repeated the setup of the case LEnKF-pert followed by the adjustment412

step as in experiment CL-adj for an inflation factor of 1.07 and localization length of 21.413

As for the Kuramoto-Sivashinsky model, the optimal values of the inflation factor and414

the length-scale were not sensitive to whether the conservation was enforced or not. The415

mean RMS error compared to the true run was 0.66072 which represents only a slightly416

RMS reduction. Given the standard deviation of the mean RMS is 0.00498, one cannot417

claim the adjustment step has a significant impact on the improvement of the realism of418

the model.419

4.3 Minimal model for sea ice and salinity with conservation420

The previous test presented the results for a conservative univariate model. However,421

the conservation property involves sometimes multiple model variables. For instance, in422

a coupled sea-ice and hydrodynamic model the amount of total salt is conserved. We423

look for minimal model for sea-ice and salinity with this conservation property. In this424

system, the integral of a function f(ϕ1, ϕ2, . . . ) of the model variables ϕ1, ϕ2, . . . over a425
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closed domain remains constant over time:426

d

dt

∫
Ω

f(ϕ1(x), ϕ2(x), . . . ) dx = 0. (37)

We use a simple multivariate model which mimics the coupling between a sea-ice427

model and a hydrodynamic model. The advection velocity (v) is essentially provided428

using the Kuramoto-Sivashinsky equation. The flow v is “compressible” as it varies with429

x. Thus we use also the variable h, representing the height of the layer, governed by the430

continuity equation.431

∂h

∂t
+

∂hv

∂x
= 0 (38)

It was necessary to add a pressure gradient term (−g ∂h
∂x
) to the Kuramoto-Sivashinsky432

equation in order to prevent an unrealistic variability of the layer thickness. This feedback433

term prevents an excessive increase or decrease in the layer thickness. It makes the system434

behave more like a shallow-water model but it still exhibits chaotic behavior.435

∂v

∂t
= −∂2v

∂x2
− ∂4v

∂x4
− v

∂v

∂x
− g

∂h

∂x
(39)

The salinity (S) is governed by the following equation which includes an advection436

term, a diffusion term and a source and sink term µF(t).437

∂hS

∂t
+

∂vhS

∂x
= κ

∂2hS

∂x2
+ µF(t) (40)

The dynamics of the ice concentration (c) are given by advection (including an addi-438
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tional ice-drift) and the source and sink term:439

∂c

∂t
+

∂(vc + v)c

∂x
= F(t). (41)

The additional drift vc of the sea ice is set to a constant. The term F represents the440

exchanges between sea ice and salinity. Here it is represented by a sinusoidal function441

(representing seasonal melting and ice formation):442

F(t) = AF sin (ωF t) .

The values of all model parameters are given in Table 2. Equation (40) can be443

rewritten in conservative form as444

∂hS

∂t
+

∂FS

∂x
= µF (42)

∂c

∂t
+

∂(vc + v)c

∂x
= F , (43)

(44)

where the flux FS is defined by445

FS = vhS − κ
∂hS

∂x
. (45)

For a periodic domain Ω, salinity fluxes and ice fluxes mutually cancel after integration446

over the whole domain and one obtains the following conservation property:447

d

dt

∫
Ω

(hS − µc) dx = 0. (46)

It involves a product between the thickness h and the salinity S. It is thus nonlinear448

in these variables. The problem is circumvented as mentioned in section 1 by using the449
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product hS as variable in the state vector (along with h, c and v). It is not necessary to450

compute the salinity S as the model equations are expressed directly in terms of hS. The451

equations are discretised in such a way that the conservation expressed in equation (46)452

is respected. For completeness, we also provide the initial conditions of the unperturbed453

simulation:454

v = cos
( x

16

)(
1 + sin

( x

16

))
, (47)

hS = cos
( x

16

)(
1 + sin

( x

16

))
, (48)

h = 20, (49)

c = exp

(
− (x− 16π)2

(5/4π)2

)
. (50)

The results of this simulation are illustrated in Figure 4. The solution is strongly455

dominated by the chaotic behavior of the velocity equation. Given the present observation456

technology, we decided to observe every second ice concentration grid point. All other457

model variables, in particular salinity, are not observed. At every time step, a random458

error is introduced. It is drawn from a random Gaussian distribution without spatial459

correlation and with an error variance of 10−7. The total amount of salt is set to zero460

before applying the model error to the state vector.461

The assimilation experiment has been repeated 1000 times for different realizations462

of the initial conditions and model error and for different values of the correlation length463

and inflation factor. For each simulation, the RMS error relative to the true solution has464

been calculated. The RMS errors are presented in Figure 5 and synthesized in Table 3.465

The results of Figure 5 appear noisy but even after increasing the number of experi-466

ments, these small-scale variations remained and were stable as it can also be seen by the467

low standard deviation of the mean RMS error (last column of Table 3). In the experi-468

ments of section 4.2, the assimilation experiments with explicitly enforced conservation469

always improved the total mean RMS error (Table 3). It should be noted, however, that470
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the schemes LEnKF-Pc and CLEnKF-Pc provided worse results than the classical co-471

variance localization schemes. We attribute this result to the fact that these schemes,472

unlike other tested schemes, introduce a possible rotation of the error space (even when473

R tends to infinity). For the multivariate model, this detrimental effect outweighs the474

possible benefits of enforcing the conservation. The best results were obtained with the475

schemes where this rotation is avoided.476

Table 2: Model parameters for the coupled multivariate model.
Parameter Value Interpretation

L 2π length of the domain
g 0.1 acceleration due to gravity
vc 2 additional drift of sea ice
∆t 0.1 time step
AF

1
100

amplitude of the melting-freezing cycle
ωF

1
10

angular frequency of sea melting-freezing cycle
κ 0.08 diffusion coefficient
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Figure 4: Free running simulation of the coupled multivariate model.
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Table 3: Lowest RMS error for different assimilation schemes and the corresponding
parameters for salinity.

L inflation mean RMS std of mean RMS

CL 17 1.00 0.18362 0.00070
CL-adj 7 1.02 0.18228 0.00047
LEnKF-pert 17 1.02 0.17444 0.00063
CLEnKF-pert 17 1.02 0.17254 0.00064
LEnKF Pc 17 1.02 0.18689 0.00080
CLEnKF Pc 17 1.02 0.18549 0.00080
LEnKF SST 17 1.02 0.17244 0.00064
CLEnKF SST 17 1.02 0.17064 0.00065
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Figure 5: RMS error between the model run with assimilation and the true solution for
different schemes and parameters.
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5 Conclusions477

This study presented three new local assimilation schemes which are formulated globally478

(i.e. for the whole state vector) where spurious long-range correlations can be filtered out479

and global conservation properties can be enforced. In principle, non-local observation480

operators can be used (e.g. assimilation of observation representing an average). Twin481

experiments with Kuramoto-Sivashinsky and a simple model mimicking the coupling482

between salinity and sea ice show the benefit of this approach compared to the traditional483

covariance localization scheme where observations are assimilated sequentially.484

Different variants of this approach were discussed (stochastic scheme, deterministic485

scheme, deterministic scheme avoiding potential rotation of the error space). In general486

it was shown that the inclusion of the conservation property is beneficial to reduce the487

total RMS error. For the tested cases, the stochastic scheme and deterministic scheme488

avoiding error space rotation provided better results than the standard covariance local-489

ization where observations are assimilated sequentially. Which variant of the schemes490

provides the best results depended in fact on the tested model. But as a general conclu-491

sion, one can recommend the scheme CLEnKF-SST which was the second best scheme492

for the univariate model and the best scheme for the multivariate model.493

494

This study may open future research perspectives. For instance, the presented ap-495

proaches could be extended to a local assimilation scheme where uncertainties in the con-496

served quantity are allowed and the analysis update is consistent with this uncertainty.497

The presented schemes would then just be a special case of this extended approach.498
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A Preconditioning653

In order to accelerate the convergence of the conjugate gradient method, a preconditioner654

matrix T is applied, which transforms the equation (14) into:655

T−1Az = T−1b. (51)

A preconditioner is efficient if one can quickly compute T−1z for any vector z and656

if the product T−1A is better conditioned than the matrix A. Different choices of the657

preconditioner matrix are possible. For instance, one can derive a preconditioner based658

on the global analysis problem which can be solved very efficiently using the Sherman-659

Morrison-Woodbury formula (for diagonal R). In this case, the preconditioner is defined660

as661

T = R+HS(HS)T , (52)

and its inverse is given by662

T−1 = R−1 −R−1HS
(
I+ (HS)TR−1HS

)−1
(HS)TR−1. (53)

Without localization, T would be equal to A and the preconditioned conjugate gra-663

dient algorithm would converge in just one iteration. This is a suitable preconditioner if664

in equation (9), the structure of P′ is essentially determined by the ensemble covariance665

matrix P. If however the structure of P′ is essentially given by the localization matrix666

ρ, then one could choose:667
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T = R+HρHT (54)

T−1 = R−1 −R−1HρaHTR−1, (55)

where668

ρa =
(
ρ−1 +HTR−1H

)−1
, (56)

which can be solved efficiently if ρ is approximated by a diffusion operator and its669

square root decomposition is readily available (e.g. Weaver and Courtier, 2001; Weaver670

et al, 2003; Moore et al, 2011) or if ρ−1 is expressed as a sparse matrix as in the spline671

interpolation (e.g. Troupin et al, 2012; Barth et al, 2014) and using efficient sparse matrix672

solvers (e.g. Chen et al, 2008; Davis and Hager, 2009). In the latter case, it is also worth673

to mention that the most CPU time-consuming step is the Cholesky factorization of the674

matrix ρ−1 +HTR−1H which needs to be done only once per assimilation cycle.675

Effectively, in the first case (equation (52)) one uses the solution of the global analysis676

as a preconditioner. In the second case, one would use the 3D-Var algorithm as a precon-677

ditioner (equation (55)). The matrix ρa can in fact be interpreted as the posterior error678

covariance matrix of the variational problem assuming that the prior error covariance is679

equal to the localization function.680
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