[en] In this study, we report the genetic diversity and
nucleotide mutation rates of five representative regions of
the murine norovirus genome during in vitro passages. The
mutation rates were similar in genomic regions encompassing
partial coding sequences for non-structural (NS)
1-2, NS5, NS6, NS7 proteins within open reading frame
(ORF) 1. In a region encoding a portion of the major capsid
protein (VP1) within ORF2 (also including the ORF4
region) and a portion of the minor structural protein (VP2),
the mutation rates were estimated to be at least one order of
magnitude higher. The VP2 coding region was found to
have the highest mutation rate.
Research Center/Unit :
FARAH - Fundamental and Applied Research for Animals and Health - ULiège
Disciplines :
Microbiology
Author, co-author :
Mauroy, Axel ; Université de Liège > Département des maladies infectieuses et parasitaires (DMI) > Virologie vétérinaire et maladies virales animales
Taminiau, Bernard ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Nezer, Carine
Ghurburrun, Elsa
Baurain, Denis ; Université de Liège > Département des sciences de la vie > Phylogénomique des eucaryotes
Daube, Georges ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Thiry, Etienne ; Université de Liège > Département des maladies infectieuses et parasitaires (DMI) > Virologie vétérinaire et maladies virales animales
Language :
English
Title :
High-throughput sequencing analysis reveals the genetic diversity of different regions of the murine norovirus genome during in vitro replication
Karst SM, Wobus CE, Goodfellow IG et al (2014) Advances in norovirus biology. Cell Host Microbe 15:668–680
Thorne LG, Goodfellow IG (2014) Norovirus gene expression and replication. J Gen Virol 95:278–291
Tomaselli S, Galeano F, Locatelli F, Gallo A (2015) ADARs and the balance game between virus infection and innate immune cell response. Curr Issues Mol Biol 17:37–51
Lauring AS, Frydman J, Andino R (2013) The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11:327–336
Sanjuan R (2012) From molecular genetics to phylodynamics: evolutionary relevance of mutation rates across viruses. PLoS Pathog 8:e1002685
Kerr PJ, Kitchen A, Holmes EC (2009) Origin and phylodynamics of rabbit hemorrhagic disease virus. J Virol 83:12129–12138
Mauroy A, Scipioni A, Mathijs E et al (2013) Genetic and evolutionary perspectives on genogroup III, genotype 2 bovine noroviruses. Arch Virol 159:39–49
Boon D, Mahar JE, Abente EJ et al (2011) Comparative evolution of GII.3 and GII.4 norovirus over a 31-year period. J Virol 85:8656–8666
Bok K, Abente EJ, Realpe-Quintero M et al (2009) Evolutionary dynamics of GII.4 noroviruses over a 34-year period. J Virol 83:11890–11901
Wobus CE, Karst SM, Thackray LB et al (2004) Replication of norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432
Thackray LB, Wobus CE, Chachu KA et al (2007) Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473
Mathijs E, de Oliveira-Filho EF, Dal Pozzo F et al (2016) Infectivity of a recombinant murine norovirus (RecMNV) in Balb/cByJ mice. Vet Microbiol 192:118–122
Mathijs E, Muylkens B, Mauroy A et al (2010) Experimental evidence of recombination in murine noroviruses. J Gen Virol 91:2723–2733
Schloss PD, Westcott SL, Ryabin T et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541
Quince C, Lanzén A, Curtis TP et al (2009) Accurate determination of microbial diversity from 454 pyrosequencing data. Nat Methods 6:639–641
Lassmann T, Sonnhammer EL (2005) Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinform 6:298
Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics 26:715–721
Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973
Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192
Heled J, Drummond AJ (2008) Bayesian inference of population size history from multiple loci. BMC Evol Biol 8:289
Pettersen EF, Goddard TD, Huang CC et al (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612
Bull RA, Eden J-S, Luciani F et al (2012) Contribution of intra- and interhost dynamics to norovirus evolution. J Virol 86:3219–3229
Cotten M, Petrova V, Phan MVT et al (2014) Deep sequencing of norovirus genomes defines evolutionary patterns in an urban tropical setting. J Virol 88:11056–11069
Vinje J, Green J, Lewis DC et al (2000) Genetic polymorphism across regions of the three open reading frames of “Norwalk-like viruses”. Arch Virol 145:223–241
Seah EL, Gunesekere IC, Marshall JA, Wright PJ (1999) Variation in ORF3 of genogroup 2 Norwalk-like viruses. Arch Virol 144:1007–1014
Hasing ME, Hazes B, Lee BE et al (2016) A next generation sequencing-based method to study the intra-host genetic diversity of norovirus in patients with acute and chronic infection. BMC Genom 17:480
Zhu S, Regev D, Watanabe M et al (2013) Identification of immune and viral correlates of norovirus protective immunity through comparative study of intra-cluster norovirus strains. PLoS Pathog 9:e1003592
Thompson KAS, Yin J (2010) Population dynamics of an RNA virus and its defective interfering particles in passage cultures. Virol J 7:257
Lemey P, Rambaut A, Pybus OG (2006) HIV evolutionary dynamics within and among hosts. AIDS Rev 8:125–140
Gray RR, Parker J, Lemey P et al (2011) The mode and tempo of hepatitis C virus evolution within and among hosts. BMC Evol Biol 11:131
Duffy S, Shackelton LA, Holmes EC (2008) Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet 9:267–276