NOTICE: this is the author’s version of a work that was accepted for publication in Tribology International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tribology International, [VOL 110, 2017] DOI: 10.1016/j.triboint.2016.10.007
All documents in ORBi are protected by a user license.
adhesive contact; random surface; multiscale contact; uncertainty quantification; CECI
Abstract :
[en] This work aims at developing a computational stochastic multiscale methodology to quantify the uncertainties of the adhesive contact problems due to capillary effects and van der Waals forces in MEMS. Because the magnitudes of the adhesive forces strongly depend on the surface interaction distances, which in turn evolve with the roughness of the contacting surfaces, the involved structural behaviors suffer from a scatter. To numerically predict the probabilistic behaviors of structures involving adhesion, the proposed method introduces stochastic meso-scale random apparent contact forces which can be integrated into a stochastic finite element model. Because the evaluation of their realizations is expensive, a generator for the random apparent contact force using the polynomial chaos expansion is constructed in an efficient way.
Disciplines :
Mechanical engineering Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Hoang Truong, Vinh ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Wu, Ling ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Paquay, Stéphane; Open Engineering SA
Golinval, Jean-Claude ; Université de Liège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Arnst, Maarten ; Université de Liège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Noels, Ludovic ; Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A computational stochastic multiscale methodology for MEMS structures involving adhesive contact
3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06 FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture F.R.S.-FNRS - Fonds de la Recherche Scientifique
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
van Spengen, W.M., Mems reliability from a failure mechanisms perspective (2003) Microelectron Reliab, 43 (7), pp. 1049-1060
Van Spengen, W.M., Puers, R., De Wolf, I., On the physics of stiction and its impact on the reliability of microstructures (2003) J Adhes Sci Technol, 17 (4), pp. 563-582
Van Spengen, W.M., Puers, R., Wolf, I.D., A physical model to predict stiction in mems (2002) J Micromech Microeng, 12 (5), p. 702
de Boer, M., Capillary adhesion between elastically hard rough surfaces (2007) Exp Mech, 47, pp. 171-183
DelRio, F.W., Dunn, M.L., de Boer, M.P., Van der waals and capillary adhesion of polycrystalline silicon micromachinedsurfaces (2013) Scanning probe microscopy in nanoscience and nanotechnology, nanoscience and technology, pp. 363-393. , B. Bhushan Springer Berlin Heidelberg
Wu, L., Rochus, V., Noels, L., Golinval, J.C., Influence of adhesive rough surface contact on microswitches (2009) J Appl Phys, 106 (11), p. 113502. , http://link.aip.org/link/?JAP/106/113502/1, [URL 〈〉]
Wu, L., Noels, L., Rochus, V., Pustan, M., Golinval, J.-C., A micro – macro approach to predict stiction due to surface contact in micro electro-mechanical systems (2011) J Micro Syst, 20 (4), pp. 976-990
Wu, L., Golinval, J.-C., Noels, L., A micro-model for elasto-plastic adhesive contact in micro-switches: application to cyclic loading (2013) Tribology Int, 57, pp. 137-146. , http://www.sciencedirect.com/science/article/pii/S0301679×12002757, [URL ]
Soylemez, E., de Boer, M.P., Crack healing between rough polycrystalline silicon hydrophilic surfaces in n-pentanol and water vapors (2015) Tribology Lett, 59 (1), pp. 1-12
de Boer, M., de Boer, P., Thermodynamics of capillary adhesion between rough surfaces (2007) J Colloid Interface Sci, 311 (1), pp. 171-185. , http://www.sciencedirect.com/science/article/pii/S0021979707002408, [URL 〈〉]
van Spengen, W.M., A physical model to describe the distribution of adhesion strength in mems, or why one mems device sticks and another identical one does not (2015) J Micromech Microeng, 25 (12), p. 125012. , http://stacks.iop.org/0960-1317/25/i=12/a=125012, [URL 〈〉]
Bachmann, D., Kühne, S., Hierold, C., Determination of the adhesion energy of mems structures by applying weibull-type distribution function (2006) Sens Actuators A: Phys, 132 (1), pp. 407-414
Soylemez, E., de Boer, M.P., van der waals force-induced crack healing in dry rough interfaces (2016) J Phys D: Appl Phys, 49 (7), p. 075303
Hoang, T.-V., Wu, L., Paquay, S., Obreja, A., Voicu, R., Müller, R., A probabilistic model for predicting the uncertainties of the humid stiction phenomenon on hard materials (2015) J Comput Appl Math, 289, pp. 173-195
Greenwood, J.A., Williamson, J.B.P., Contact of nominally flat surfaces (1966) Proc R Soc Lond Ser A Math Phys Sci, 295 (1442), pp. 300-319
Greenwood, J., Wu, J., Surface roughness and contact: An apology (2001) Meccanica, 36 (6), pp. 617-630
Ardito, R., Corigliano, A., Frangi, A., Rizzini, F., Advanced models for the calculation of capillary attraction in axisymmetric configurations (2014) Eur J Mech – A/Solids, 47, pp. 298-308. , http://www.sciencedirect.com/science/article/pii/S0997753814000679, [URL 〈〉]
Ardito, R., Corigliano, A., Frangi, A., Modelling of spontaneous adhesion phenomena in micro-electro-mechanical systems (2013) Eur J Mech – A/Solids, 39, pp. 144-152. , http://www.sciencedirect.com/science/article/pii/S0997753812001489, [URL 〈〉]
Hyun, S., Robbins, M.O., Elastic contact between rough surfaces: effect of roughness at large and small wavelengths (2007) Tribol Int, 40 (10), pp. 1413-1422
Pei, L., Hyun, S., Molinari, J., Robbins, M.O., Finite element modeling of elasto-plastic contact between rough surfaces (2005) J Mech Phys Solids, 53 (11), pp. 2385-2409. , http://www.sciencedirect.com/science/article/pii/S0022509605001225, [URL 〈〉]
Luan, B., Robbins, M.O., Contact of single asperities with varying adhesion: comparing continuum mechanics to atomistic simulations (2006) Phys Rev E, 74 (2), p. 026111
Sun, W., The dynamic effect on mechanical contacts between nanoparticles (2013) Nanoscale, 5, pp. 12658-12669
Sun, W., Li, Y., Xu, W., Mai, Y.-W., Interactions between crystalline nanospheres: comparisons between molecular dynamics simulations and continuum models (2014) RSC Adv, 4, pp. 34500-34509
Luan, B., Robbins, M.O., Hybrid atomistic/continuum study of contact and friction between rough solids (2009) Tribol Lett, 36 (1), pp. 1-16
Nayak, P.R., Random process model of rough surfaces (1971) J Tribol, 93 (3), pp. 398-407
Hertz, H., Ueber die berührung fester elastischer körper (1882) J Angew Math, 92, pp. 156-171. , http://eudml.org/doc/148490, [URL 〈〉]
Johnson, K.L., Kendall, K., Roberts, A.D., Surface energy and the contact of elastic solids (1971) Proc R Soc Lond A Math Phys Sci, 324 (1558), pp. 301-313. , http://rspa.royalsocietypublishing.org/content/324/1558/301.abstract, [URL 〈〉]
Derjaguin, B., Muller, V., Toporov, Y., Effect of contact deformations on the adhesion of particles (1975) J Colloid Interface Sci, 53 (2), pp. 314-326. , http://www.sciencedirect.com/science/article/pii/0021979775900181, [URL 〈〉]
Maugis, D., Adhesion of spheres: The jkr-dmt transition using a dugdale model (1992) J Colloid Interface Sci, 150 (1), pp. 243-269. , http://www.sciencedirect.com/science/article/pii/002197979290285T, [URL 〈〉]
Robert, C., Casella, G., (2013) Monte Carlo statistical methods, , Springer-Verlag New York
Clément, A., Soize, C., Yvonnet, J., Computational nonlinear stochastic homogenization using a nonconcurrent multiscale approach for hyperelastic heterogeneous microstructures analysis (2012) Int J Numer Methods Eng, 91 (8), pp. 799-824
Clément, A., Soize, C., Yvonnet, J., Uncertainty quantification in computational stochastic multiscale analysis of nonlinear elastic materials (2013) Comput Methods Appl Mech Eng, 254, pp. 61-82
Soize, C., Ghanem, R., Physical systems with random uncertainties: chaos representations with arbitrary probability measure (2004) SIAM J Sci Comput, 26 (2), pp. 395-410
Arnst, M., Ghanem, R., Soize, C., Identification of bayesian posteriors for coefficients of chaos expansions (2010) J Comput Phys, 229 (9), pp. 3134-3154
Soize, C., Stochastic models of uncertainties in computational mechanics (2012), American Society of Civil Engineers Reston
Desceliers, C., Ghanem, R., Soize, C., Maximum likelihood estimation of stochastic chaos representations from experimental data (2006) Int J Numer Methods Eng, 66 (6), pp. 978-1001
Rosenblatt, M., Remarks on a multivariate transformation (1952) Ann Math Stat, pp. 470-472
Temizer, İ., Wriggers, P., Thermal contact conductance characterization via computational contact homogenization: a finite deformation theory framework (2010) Int J Numer Methods Eng, 83 (1), pp. 27-58
Temizer, I., Wriggers, P., A multiscale contact homogenization technique for the modeling of third bodies in the contact interface (2008) Comput Methods Appl Mech Eng, 198 (3-4), pp. 377-396. , http://www.sciencedirect.com/science/article/pii/S0045782508003095, [URL 〈〉]
Johnson, K.L., Johnson, K.L., Contact mechanics (1987), Cambridge University Press United Kingdom
Newland, D.E., An introduction to random vibrations, spectral and wavelet analysis (2012) Cour Corp
Shinozuka, M., Simulation of multivariate and multidimensional random processes (1971) J Acoust Soc Am, 49 (1B), pp. 357-368. , http://scitation.aip.org/content/asa/journal/jasa/49/1B/10.1121/1.1912338, [URL 〈〉]
Poirion, F., Soize, C., http://dx.doi.org/10.1007/3-540-60214-3-50, Numerical methods and mathematical aspects for simulation of homogeneous and non homogeneous gaussian vector fields. In: Krée P, Wedig W. (Eds.), Probabilistic methods in applied physics, Lecture Notes in Physics, Springer Berlin Heidelberg, vol. 451
1995. p. 17–53
Cai, S., Bhushan, B., Meniscus and viscous forces during separation of hydrophilic and hydrophobic surfaces with liquid-mediated contacts (2008) Mater Sci Eng: R: Rep, 61 (1), pp. 78-106
Asay, D.B., Kim, S.H., Evolution of the adsorbed water layer structure on silicon oxide at room temperature (2005) J Phys Chem B, 109 (35), pp. 16760-16763
Maugis, D., Gauthier-Manuel, B., Jkr-dmt transition in the presence of a liquid meniscus (1994) J Adhes Sci Technol, 8 (11), pp. 1311-1322
Kim, K.-S., McMeeking, R., Johnson, K., Adhesion, slip, cohesive zones and energy fluxes for elastic spheres in contact (1998) J Mech Phys Solids, 46 (2), pp. 243-266. , http://www.sciencedirect.com/science/article/pii/S0022509697000707, [URL 〈〉]
Cappella, B., Dietler, G., Force-distance curves by atomic force microscopy (1999) Surf Sci Rep, 34 (1), pp. 1-104
Ardito, R., Frangi, A., Rizzini, F., Corigliano, A., Evaluation of adhesion in microsystems using equivalent rough surfaces modeled with spherical caps (2015) Eur J Mech – A/Solids, , http://www.sciencedirect.com/science/article/pii/S0997753815001667, [URL 〈〉]
Yastrebov, V.A., Durand, J., Proudhon, H., Cailletaud, G., Rough surface contact analysis by means of the finite element method and of a new reduced model (2011) C. R. Méc., 339 (7-8), pp. 473-490. , http://www.sciencedirect.com/science/article/pii/S163107211100091X, [surface mechanics : facts and numerical models URL 〈〉]
DelRio, F.W., Dunn, M.L.D., de Boer, M.P., Capillary adhesion model for contacting micromachined surfaces (2008) Scr Mater, 59 (9), pp. 916-920. , http://www.sciencedirect.com/science/article/pii/S1359646208001668, [viewpoint set no. 44 The materials for MEMS. URL 〈〉]
Kogut, L., Etsion, I., Elastic-plastic contact analysis of a sphere and a rigid flat (2002) J Appl Mech, 69 (5), pp. 657-662
Kogut, L., Etsion, I., Adhesion in elastic-plastic spherical microcontact (2003) J Colloid Interface Sci, 261 (2), pp. 372-378
Jackson, J.E., A user's guide to principal components (2005), 587. , John Wiley & Sons New-York
Jolliffe, I., Principal Component Analysis (2014), Wiley StatsRef: Statistics Reference Online
Fodor, I.K., A survey of dimension reduction techniques
2002
Das, S., Ghanem, R., Finette, S., Polynomial chaos representation of spatio-temporal random fields from experimental measurements (2009) J Comput Phys, 228 (23), pp. 8726-8751. , http://www.sciencedirect.com/science/article/pii/S0021999109004677, [URL 〈〉]
De Boer, M., Michalske, T., Accurate method for determining adhesion of cantilever beams (1999) J Appl Phys, 86 (2), pp. 817-827
Majumdar, A., Tien, C., Fractal characterization and simulation of rough surfaces (1990) Wear, 136 (2), pp. 313-327
Xue, X., Polycarpou, A.A., Phinney, L.M., Measurement and modeling of adhesion energy between two rough microelectromechanical system (mems) surfaces (2008) J Adhes Sci Technol, 22 (5-6), pp. 429-455
Yamazaki, F., Shinozuka, M., Digital generation of non-gaussian stochastic fields (1988) J Eng Mech, 114 (7), pp. 1183-1197
DelRio, F.W., Dunn, M.L., Boyce, B.L., Corwin, A.D., De Boer, M.P., The effect of nanoparticles on rough surface adhesion (2006) J Appl Phys, 99 (10), p. 104304
DelRio, F.W., Dunn, M.L., de Boer, M.P., Growth of silicon carbide nanoparticles using tetraethylorthosilicate for microelectromechanical systems (2007) Electrochem Solid-State Lett, 10 (10), pp. H27-H30
Scott, D.W., Multivariate density estimation: theory, practice, and visualization (2015), John Wiley & Sons New-York
Xiu, D., Karniadakis, G.E., The wiener-as key polynomial chaos for stochastic differential equations (2002) SIAM J Sci Comput, 24 (2), pp. 619-644
Xiu, D., Numerical methods for stochastic computations: a spectral method approach (2010), Princeton University Press Princeton
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.