NOTICE: this is the author’s version of a work that was accepted for publication in Tribology International. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Tribology International, [VOL 110, 2017] DOI: 10.1016/j.triboint.2016.10.007
All documents in ORBi are protected by a user license.
Abstract :
[en] This work aims at developing a computational stochastic multiscale methodology to quantify the uncertainties of the adhesive contact problems due to capillary effects and van der Waals forces in MEMS. Because the magnitudes of the adhesive forces strongly depend on the surface interaction distances, which in turn evolve with the roughness of the contacting surfaces, the involved structural behaviors suffer from a scatter. To numerically predict the probabilistic behaviors of structures involving adhesion, the proposed method introduces stochastic meso-scale random apparent contact forces which can be integrated into a stochastic finite element model. Because the evaluation of their realizations is expensive, a generator for the random apparent contact force using the polynomial chaos expansion is constructed in an efficient way.
Name of the research project :
3SMVIB: The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture
F.R.S.-FNRS - Fonds de la Recherche Scientifique
Scopus citations®
without self-citations
8