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Abstract

This work aims at developing a computational stochastic multiscale methodology to quantify the uncertain-
ties of the adhesive contact problems due to capillary effects and van der Waals forces in MEMS. Because
the magnitudes of the adhesive forces strongly depend on the surface interaction distances, which in turn
evolve with the roughness of the contacting surfaces, the involved structural behaviors suffer from a scatter.
To numerically predict the probabilistic behaviors of structures involving adhesion, the proposed method
introduces stochastic meso-scale random apparent contact forces which can be integrated into a stochastic
finite element model. Because the evaluation of their realizations is expensive, a generator for the random
apparent contact force using the polynomial chaos expansion is constructed in an efficient way.
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1. Introduction

One of the common failures in microelectromechanical systems (MEMS) is stiction [1, 2, 3, 4, 5, 6, 7, 8],
in which two micro surfaces permanently adhere together, e.g. the stiction failure of micro cantilever
beams illustrated in Fig. 1(a). The failure is due to the dominance of the adhesive surface forces, such as
van der Waals (vdW) forces and capillary forces, in comparison with the body forces. On the one hand,
in humid conditions condensing menisci develop between the contacting hydrophilic surfaces, result into
relative negative pressures, and lead to the so-called humid stiction, see Fig. 1(b). On the other hand, in
dry environments vdW forces become dominant.

MEMS stiction failure is an uncertain phenomenon as it is experimentally observed in [4, 5, 9]. In the
present work, a stochastic multiscale model is developed to quantify the uncertainty of MEMS stiction.
The model is developed with three assumptions: (i) the considered source of the scatter in stiction is the
randomness of contacting surfaces; (ii) the contacting surfaces are nominally flat with nanometers roughness;
(iii) to model the capillary forces, the constant pressure assumption is applied [10].

In the adhesive problems of MEMS, due to the comparability between the surface roughness and the
ranges of the adhesive forces, the interaction does not involve the whole surface topography but only its
highest asperities, see Fig. 1(b) [2]. Moreover, due to the separation of scales between the ranges of the
adhesive forces and the structural displacements, the effective contact regions are much smaller than the
structural dimensions. For instance, in cases of micro cantilever beams, the effective contact regions are
located only around the crack tips defined as the separating point between the unattached part and attached
part of the failed beam, see Fig. 1(a). We can thus define three characteristic length scales:
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(i) The lower length scale lm, typically O(1 µm) for the studied rough surfaces as it will be discussed,
measured by the correlation length of the contacting rough surface, which is defined here in this paper
as the spatial distance at which the evaluated autocorrelation of the rough surfaces is negligible in
comparison with the surface roughness –from the point of view of materials, lm relates to the grain
size of the considered structure;

(ii) The meso-scale length lmeso, typically O(3 µm) for the studied beam stiction problem, which is defined
as the length on which the variation of the structural displacement, e.g. the displacement of beam
central line in case of micro beams, is negligible in comparison with the roughness of the contacting
surface (nanometers for MEMS); and

(iii) The upper scale length lM, typically O(100 µm), which is characterized by the size of the considered
structures.

Because of the comparability between the length scales lm and lmeso, and of the randomness of contact
surfaces, there exist uncertainties in the adhesive behaviors of the micro structures [1, 11, 12]. From the
point of view of multi-asperities contact, the randomness of surfaces affects not only the distribution of
the asperities heights, but also their spatial arrangement, e.g. around the crack tips see Fig. 1. Indeed,
the contact between the rough surfaces does not involve the whole apparent surfaces but only their highest
topologies [4]: the physical contact area is only O(1%) of the apparent area. As a result, the physical
interaction occurs between a limited number of asperities (typically O(100) for the meso-scale size contacting
surfaces in the studied problem), and therefore the contact behavior is uncertain as discussed in [13]. For
micro cantilever beams, the crack lengths, defined as the length of the open, unattached part of the failure
configuration, see Fig. 1(a), can suffer from a scatter. The crack length characterizes the adhesion strength,
i.e. the shorter the crack length, the higher the exhibited adhesion strength.

(a) Initial and failure configurations (not on scale). (b) Stiction between two surfaces (not on scale).

Figure 1: The stiction failure of a cantilever beam structure under humid condition: (a) initial configuration and S-shape failure
configuration with crack length ls, (b) zoom into the contact zone with the condensing water area on the surface topology.

For the adhesive rough surface contact problems of micro structures, because there exist uncertainties
which significantly affect micro structures reliability, the scatter on the contact behaviors was already studied
in the literature, e.g. in [1, 11, 12, 14]. Statistical models to predict the adhesion strength, such as the
adhesive surface energy, were developed in these researches. However, in order to quantify not only the
adhesive surface energies but also the reliability of the devices involving adhesion, further steps are required.
The key step is to be able to predict the probabilistic behavior of structures subjected to adhesive contact
forces by accounting for the randomness of contact surfaces. This paper aims at developing a numerical
methodology to accomplish this task by coupling a multiscale methodology for micro structures involving
adhesive rough surface contact to an uncertainty quantification process.
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In terms of deterministic stiction models, the non-concurrent multiscale method, developed in [7], is
considered. The method is developed thanks to the length scales separation between the length scale of the
surfaces roughness, lm, and the length scale of the structural displacements, lM. The main ingredient of this
multiscale method is to construct the apparent adhesive contact forces, which homogenize the effects of the
surface roughness and can be integrated, under the formulas of a contact law, into a finite element (FE)
model of the studied structure. Mathematically speaking, the apparent contact force is an average force
integrated on the apparent interacting area defining by meso-scale length lmeso.

In the literature, two main classes of methods can be found to evaluate the apparent contact forces for the
adhesive problems: (i) analytical methods such as the Greenwood and Williamson (GW) approach [15, 16];
and (ii) numerical methods such as FE models [17, 18, 19, 20], molecular dynamics (MD) models [21, 22, 23],
or FE-MD hybrid models [24]. The first candidate, the GW approach, uses the statistical parameters of the
contact surfaces [25] to deduce the equivalent asperity contact model on which the asperity contact theories
[26, 27, 28, 29] are applied to evaluate the contact forces. Due to its simple implementation, this model is
widely used. However, the approach requires some cautions [14, 16]. For instance, it is limited to the cases
of deterministic contacts for which the contact surface size effect is not accounted. The second candidate,
a full numerical model using either a FE, a MD, or a FE-MD hybrid model, requires a high computational
cost, e.g. a FE model needs to discretize the micro-scale size surfaces with a nano-scale mesh size, which
limits their applicability when performing uncertainty quantification.

In order to predict the uncertainties of the structural behaviors accounting for the existing randomness in
the contact surfaces, the apparent contact forces are considered as random variables. To evaluate realizations
of random apparent contact forces, the probabilistic contact model previously developed by the authors in
[14], which is characterized by an acceptable computational cost, is considered. The advantage of this method
is to account for the surfaces sizes effect on the statistical behavior, which is required for the uncertainty
quantification process, when evaluating the apparent contact forces. In order to account for the randomness
of contact surfaces, that method estimates the power spectrum density (PSD) functions of the interacting
surfaces from their topology measurements, e.g. obtained by the means of the atomic force microscopy
(AFM). Applying the random field theory, the realizations of contact surfaces with the size of interest can
be generated. For each surface realization, the corresponding apparent contact force is then evaluated by a
semi-analytical solution. However, in [14], the evaluated random apparent contact forces were not used in
a multiscale FE model because of the difficulty to formulate a stochastic multiscale FE approach, which is
the main purpose of the present paper.

In this paper, these apparent adhesive contact forces are integrated as contact laws in a FE code leading
to a multiscale model [7]. Taking advantage of the stochastic method of the apparent contact force, and in
order to investigate the structural behaviors in a probabilistic way, the multiscale method is coupled with
an uncertainty quantification process. The convenient solution is to consider direct Monte Carlo simulations
(MCS) [30]. This direct MCS method follows three main steps: (i) constructing a generator for the considered
rough contact surfaces using their estimated PSD functions; (ii) for each generated contact surface of the
contact zone size, evaluating the corresponding meso-scale apparent contact forces; and (iii) integrating the
meso-scale apparent contact forces into a FE model to evaluate the non-deterministic structural behaviors.
The direct MCS method evaluates the set of structural behaviors corresponding to the set of the generated
surfaces from which the probability of the structural behaviors is identified. This requires a large number of
apparent contact forces to be evaluated, and in turn, demands large computational resources. To reduce the
computational cost, we consider here a stochastic model in the multiscale method. Although, such method
was never developed for adhesive contact problems, we take advantage of previous works [31, 32, 33].

In this stochastic model-based multi-scale method, the apparent adhesive contact forces are considered
as a random variable which are efficiently generated by a stochastic model. The latter is built from a limited
number of explicitly evaluated apparent contact forces, while as many as required contact forces can be
generated at a reduced cost. In order to construct the stochastic model, the apparent force vs. distance
curves are parametrized via an adhesive analytical contact function in order to be represented by vectors
of parameters. The stochastic model is then constructed to generate the random parameters vectors. To
construct the stochastic model approximating the probability of the target random vector, common methods
choose a labeled distribution, e.g. uniform, Gaussian or log-normal distribution ..., whose parameters are
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estimated using the input set of explicitly evaluated samples. An alternative method, based on the gener-
alized polynomial chaos expansion (gPCE), see e.g. [34, 35, 36, 37, 38], constructs a transformation from
a labeled random vector, whose distribution is known, to the target random vector. The second method
is more flexible than the first one in approximating the studied random vectors as it can represent any
second order random vectors and is therefore adopted in this work. The construction of the gPCE-based
stochastic model is based on Rosenblatt isoprobabilistic transformation [39] and is highly efficient in terms
of computational cost.

This paper is structured as follows. In Section 2, a probabilistic multiscale framework for adhesive
contact problems is developed following 4 stages: (i) the introduction of the stochastic multiscale framework
using random apparent contact forces, (ii) the lower-scale model: the probabilistic model of random contact
surfaces, (iii) the meso-scale model: the evaluation of apparent contact forces accounting for capillary and
vdW effects; and (iv) the upper-scale model: the stochastic FE model of the structural behaviors. In Section
3, the methodologies to quantify the randomness of the structural behaviors involving stiction are developed:
(i) the direct MCS multiscale method, and (ii) the stochastic model-based multiscale method. The stochastic
model of the random apparent contact forces, required in the latter, is then constructed. In Section 4, the
developed methodology is applied to predict the uncertainties of the stiction failure of poly-silicon micro
cantilever beams. In this section, a comparison of the two uncertainty propagation methods, the direct MCS
method and the stochastic model-based multiscale method, in terms of numerical results and computational
efficiency, is also given. In Section 5, the methodology is validated through the comparison of the numerical
results with the experimental results reported in [5, 9].

2. Computational probabilistic multiscale framework for adhesive contact problems

In this section we develop a multiscale framework to evaluate the probabilistic behavior of micro struc-
tures involving frictionless adhesive elastic contacts, see e.g. [7, 41, 42]. In order to simplify the numerical
evaluation of the contact forces, the contact between two rough surfaces {S1,S2} is modeled as the inter-
action between a plane and an equivalent rough surface, S, whose statistical properties are deduced from
those of the contacting surfaces {S1,S2} [40].

A random rough contact surface S is modeled by adding a zero mean random field z, discussed in
Section 2.2.1, to the mean surface S̄, which corresponds to the contact boundary of the upper scale geometry.
For instance, in the case of micro beams, the mean surface S̄ is located at a distance t/2 below the beam
neutral surface, with t the beam average thickness, see Fig. 2(a). When considering the homogenization
technique, the mean surface S̄ is associated with the contact laws, which are the apparent adhesive contact
forces evaluated using the meso-scale contact problem, see Fig. 2(b), and illustrated in Fig. 2(c). The
structural scale problem in which the meso-scale apparent adhesive contact forces are integrated to represent
the lower scale contact is then efficiently solved by a FE model. The integration of these apparent adhesive
contact forces into the FE model is numerically implemented such that each integral point, used to evaluate
the equivalent nodal forces and located on S̄, is associated with an apparent adhesive contact force. As these
contact forces are random, as illustrated in Fig. 2(c), different integral points are associated with different
contact forces.

This section is developed as follows: (i) a stochastic multiscale scheme for adhesive contact problems is
derived using the random apparent adhesive contact forces as the scales bridge; (ii) the probabilistic contact
model developed in [14] to evaluate these forces due to capillary effects is summarized and enhanced to
account for vdW forces; and (iii) a stochastic FE model is applied to solve the upper scale problem, i.e. to
study the structural behaviors.

2.1. Stochastic multiscale scheme for adhesive contact problems

In this section, a stochastic multi-sale scheme is developed using the random apparent contact forces as
the scales bridge and the energy consistency condition to derive the expression of the homogenized contact
law.
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(a) Contact problem (not on scale). (b) Meso-scale contact problem (not on scale).

(c) Apparent contact forces.

Figure 2: The multiscale model of adhesive contact problem applied for micro beams. (a) The contact configuration between
a rough surface beam and a plane in humid conditions. In this figure, t is the beam thickness. (b) The 1D meso-scale contact
problem. (c) The random meso-scale apparent adhesive contact forces.

Upper scale governing equation. At the upper scale, a numerical FE model of the contact behavior replaces
the real contact rough surface S by its mean surface S̄, see Fig. 2(a), and associates this mean surface with
the upper scale contact forces f representing the lower scale rough surface adhesive contact. Let us define
u and uS̄ as respectively the upper scale structural displacements of the whole structure and the upper
scale normal displacements of the mean surface S̄. At the upper scale of the structural behavior, the weak
formulation governing equation of the elastic structure subjected to the upper scale contact forces f applied
on the mean surface S̄ is given by

δU = δW c(S(θ), uS̄) + δW a, (1)

where S(θ) refers to a realization of the random surface S with θ defined on the probability space (Ω,F, P ),
and δU , δW a, δW c are respectively the internal virtual work, the external virtual work of applied forces,
and the external virtual work of contact forces resulting from the adhesive contact. The external virtual
work δW c is evaluated from the upper scale contact forces as

δW c =

∫
S̄
f(S(θ), uS̄)δuS̄dS̄. (2)

Meso-scale apparent adhesive contact force. Let xr ∈ S̄, with r = 1, . . . , Np, be the Np integral points
located on the mean surface S̄ of the upper scale numerical model used to evaluate the external virtual
work of contact forces, Eq. (2). Each integral point is associated with a sub-contact domain which involves
a part, Sr, of the rough surface S with size lmeso

1 × lmeso
2 and centered at xr, see Fig. 2(b). For isotropic

cases with 2D contact structural scale model, lmeso
1 = lmeso

2 = lmeso. As discussed previously, the meso-scale
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length lmeso is determined to satisfy the condition that the variation of the displacement uS̄r of the mean
surface S̄r is negligible in comparison with the roughness of the surfaces, see analyses in Section 4.2. With
that assumption, let us define d̄r the normal distance from the mean surface S̄r to the encountering plane.
The meso-scale apparent contact force, defined as the average of the lower-scale normal contact force, fm,
applied on the rough surface Sr and for which the displacement of the mean surface S̄r is prescribed to be
parallel with the plane at a distance d̄r, see Fig. 2(b), is given by

f̄r(d̄r, θ) =
1

AS̄r

∫
Sr(θ)

fm(d̄r, θ)dS. (3)

In this equation AS̄r = lmeso
1 × lmeso

2 is the area of surface S̄r. A realization of the apparent adhesive contact
forces and their uncertainty range are illustrated in Fig. 2(c). For the meso-scale contact problem, the
energy consistency requirement is stated as

f(xr)δuS̄(xr) =
1

AS̄r

∫
Sr(θ)

fm(d̄r, θ)δd̄rdS. (4)

As on the meso-scale contact problem, the displacement of the mean surface is uniform and constrained to
be δd̄r = δuS̄ , this last relation (4) is satisfied with the structural scale forces defined as

f(xr) = f̄r, with r = 1, . . . , Np. (5)

In the following, the probabilistic contact model developed in [14] for the evaluation of the random
apparent contact forces, f̄r(d̄r, θ), is first summarized, and a stochastic FE model of the structural behaviors
using these forces as the contact laws is then developed.

2.2. Evaluation of the meso-scale apparent adhesive contact forces

In order to evaluate the realizations of the random apparent contact force, defined by Eq. (3) and
illustrated in Fig. 2(c), three properties have to be accounted for: (i) the topology of the surfaces; (ii) the
adhesive interaction; and (iii) the constitutive material laws of the contacting bodies. For the first issue, the
probabilistic contact model developed by the authors in [14] estimates the PSD functions of the two involved
surfaces {S1,S2} from their topology measurements, e.g. using AFM for MEMS surfaces, and then evaluates
the equivalent PSD function corresponding to the equivalent surface S. Using the equivalent PSD function,
a set of independent identically distributed (IID) equivalent surfaces is generated. To account for the last
two issues, a contact model is applied to evaluate the apparent contact forces for the generated surfaces. In
the cases of the adhesive contact problems on (relative) hard materials, such as the humid stiction or vdW
interaction on poly-silicon surfaces, the semi-analytical method developed in [14] can be applied to evaluate
the contact forces with limited computational resources.

2.2.1. Probabilistic model and random generator of the roughness contacting surfaces

The normal height distribution of a rough surface S(θ), measured from its mean surface, can be modeled
as a random field (Z(x, θ),x ∈ D) valued in R, indexed by D ⊂ R2, and defined on the probability triplet
(Ω,F, P ). In [14] we have modeled the rough surface as a zero-mean stationary isotropic Gaussian random
field for which the autocorrelation function rZ is given by [43]

rZ(τ1, τ2) = E (Z(x1, x2)Z(x1 + τ1, x2 + τ2))

=

∫
<2

zz̃pZ(x1,x2),Z(x1+τ1,x2+τ2)(z, z̃)dzdz̃,
(6)

where E is the expectation operation, and pZ(x1,x2),Z(x1+τ1,x2+τ2) is the second order marginal probability
density function of the random field (Z(x, θ),x ∈ D). For isotropic surfaces, the autocorrelation function is
simplified as a 1D function as

rZ(τ1, τ2) = rZ(τ), ∀{τ1, τ2} ∈ R2 : τ =
√
τ2
1 + τ2

2 . (7)
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The random surface can be alternatively characterized by a PSD function defined as the Fourier transform
of the correlation function, i.e.

sZ (ζ1, ζ2) =

∫
<2

rZ(τ1, τ2) exp (−i(ζ1τ1 + ζ2τ2))dτ1dτ2, (8)

where {ζ1, ζ2} are the wave numbers and i2 = −1. From the measurements of the surface height, e.g. using
AFM, an approximation of the correlation function can be evaluated using Eq. (6) and the corresponding
PSD function can be obtained using Eq. (8). In addition to this indirect method, the PSD function can be
estimated directly from the measurements of the surface height as follows

sZ(ζ) = lim
χ→∞

1

χ2
|ẑ(ζ)|2, (9)

where χ × χ is the truncated size of the measurements, and ẑ(ζ) is the Fourier transform of the surface
measurements z(x),

ẑ(ζ) =

∫
R2

1[−χ/2,χ/2]2{x}z(x) exp (−iζ1x1 − iζ2x2)dx, (10)

where 1[−χ/2,χ/2]2{x} is equal to 1 if x ∈ [−χ/2, χ/2]2 and equal to zero otherwise.
For the cases in which the involved contacting surfaces {S1,S2} are statistically independent, the PSD

function of the equivalent surface S can be constructed from their PSD functions {sZ(1)
, sZ(2)

} as

sZ = sZ(1)
+ sZ(2)

. (11)

The normal height evolution z(x, θ) corresponding to the surface realization S(θ) can be generated using the
PSD function sZ following the works of Shinozuka [44] and Poiron and Soize [45] as described in AppendixA.
Fig. 3 illustrates a realization of contact surfaces using the PSD function that will be constructed in Section 4.

Figure 3: A generated surface sample using the PSD function constructed in Section 4.

2.2.2. Numerical evaluation of the random apparent adhesive contact forces

Once the rough surfaces S(θ) are generated using the method described in Section 2.2.1, the semi-
analytical method developed in [14] is applied to evaluate the corresponding apparent adhesive contact
forces f̄r(d̄r, θ) defined by Eq. (3) and illustrated in Fig. 2(c). In the following, the physical aspects of the
capillary forces and vdW forces are described and two semi-analytical models used to evaluate the apparent
adhesive contact force f̄r, in which the first one accounts for capillary forces and the second one accounts
for both capillary and vdW forces, are summarized.

7



(a) Geometry of meniscus

30 40 50 60 70 80 90 100
0

50

100

150

200

Relative humidity [%]

-L
a
p
la
ce

p
re
su
re

[M
P
a
]

 

 

30 40 50 60 70 80 90 100
0

10

20

30

40

W
a
te
r
h
ei
g
h
t
[n
m
]

Laplace pressure
Water height

(b) Laplace pressure and water height

Figure 4: The configuration of condensing water. (a) Meniscus between a sphere and a half space. (b) The evolution of the
Laplace pressure and of the water height in terms of the humidity level.

Capillary phenomena. The capillary forces result from the negative pressure inside the condensing water
between two hydrophilic contacting surfaces, see Fig. 4(a). In terms of physics, during the separation process,
the meniscus geometry varies depending on the competition between evaporation and condensation of water
[10]. On the one hand, when the separation is rapid, the volume of meniscus is constant. On the other hand,
if the separation is slow the radius of meniscus and its water pressure are constant. Between the two extreme
cases, the adhesion energy of the latter is reduced by a factor of 2 [10]. In this paper, the assumption that
the water pressure and the meniscus radius are constant is applied. That assumption respects the condition
of the experiments reported in [5, 9] which will be used for the experimental comparison in Section 5. With
the constant pressure assumption, the pressure inside the meniscus is equal to the Laplace pressure, which
is evaluated at a given relative humidity level RH as [10, 46]

∆P =
γLG

rK
=
RT lnRH

Vm
, (12)

where γLG is the liquid vapor energy, Vm is the liquid molar volume, R is the universal gas constant, and
T is the absolute temperature. In case of water condensation Vm = 0.018 L/mol and γLG = 0.072 N/m at
T = 300 K. The geometry of the menisci is characterized by the contact angles {ρ1, ρ2}, depending on the
surfaces properties, and by the Kelvin radius rK given by [46]

rK =
γLGVm
RT lnRH

=
0.53

lnRH
[nm] < 0. (13)

For the nano-scale rough surfaces, because the topology curvature is small, e.g. the radius of contacting
sphere is much larger than the Kelvin radius see Fig. 4(a), the capillary range, defined as the maximum
contact distance at which water can condense between two bodies, can be approximated by

hC = −2rK (cos(ρ1) + cos(ρ2)) . (14)

The capillary forces in the present work are modeled using Dugdale cohesive model, i.e. inside the range hC
the pressure is constant and equal to the Laplace pressure, while outside this range the pressure vanishes.
That model is consistent with the assumption of constant pressure [10].

The calculated Laplace pressures and condensing water heights for contact angles ρ1 = ρ2 = 0 are
illustrated in Fig. 4(b). It can be observed that the Laplace pressure is much smaller than the Young’s
modulus of hard materials such as poly-silicon, while the condensing water heights are comparable with the
roughness of the typical MEMS surfaces [4, 5].

Remark: To simplify the numerical problem in the current work, the effects the absorbed surface layers
[47], which are the water layers on the hydrophilic surfaces, are not accounted for. The work [47] showed
that these absorbed surface layers are present in liquid state for humidity RH ≥ 60%.
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Table 1: Dugdale model parameters of vdW forces.

Environmental condition Dry air RH = 0 Humid air RH > 0

ωvdW [mJ/m2] 167.1 87.4
−σvdW [MPa] 732 383
hvdW [nm] 0.228 0.228

Van der Waals force. In this paper, we use Maugis theory [48] with Dugdale assumption to model the vdW
adhesive elastic contact between a sphere and a flat surface.The model has been extended by Kim et al. [65]
in the cases of non-contacting adhesive interactions between the sphere and the flat surface. The models
implementation is detailed in [6].

The vdW interaction can be characterized by the adhesive energy per unit area, ωvdW, given by

ωvdW =
H

16πD2
0

, (15)

where H is Hamaker constant, and D0 is the equilibrium distance at which the force between two half space
is zero and is given by D0 = (2/15)1/6r0 with r0 the finite distance at which the inter-molecular potential is
zero. For silicon, the Hamaker constant is 18.65× 10−20 J through dry air [49], corresponding to RH ∼ 0,
and 9.75×10−20 J through water [49], which can be due to the menisci. In practice, the poly-silicon surfaces
can be oxidized with thin layers (2-3 nm) of SiO2 [13], and the Hamaker value may be changed. However
the change remains lower than one order of magnitude. For the sake of simplification, the Hamaker values
reported in [49] are considered in this paper. For silicon, the distance r0 = 2.09 Å leading to D0 = 1.49 Å.
Using Dugdale assumption, the vdW stress, σvdW, is constant for the interaction distances smaller than
the critical separation hvdW, and vanishes outside this range. The energy balance leads to the relationship
ωvdW = −σvdW × hvdW. For silicon, the range hvdW can be deduced as hvdW = 0.97× 21/6r0 = 2.28 Å [7].
The modeling parameters of vdW interaction are reported in Tab. 1. In comparison with the capillary forces
range hC (∼ nm), the vdW force range hvdW is much shorter.

Numerical model to evaluate the apparent adhesive contact forces. When two rough surface bodies interact,
while the vdW and capillary adhesive forces pull them together, the elastic forces resulting from the bodies
deformation tend to separate them. Those forces contribute to the apparent adhesive contact forces and
must be accounted for in the numerical model. We develop two numerical models, the first one accounts
only for the capillary forces as the adhesive source, and the second one accounts for both capillary and vdW
forces.

In cases of capillary contact problems on (relative) hard materials, the repulsive contact force results
from the elastic stress concentrating at the highest asperities while the adhesive contact force results from
adhesive pressures acting on the zones surrounding these asperities, see Fig. 1(b). In this kind of problems,
because the elastic stress is much larger than the Laplace pressure, at equilibrium the water condensing area
is much wider than the physical contact areas between asperities. For those cases, the adhesive part and
the repulsive part of the contact force can be evaluated separately [28], and the deformation of asperities is
caused mainly by the elastic stress [14].

To evaluate the contact forces for the capillary contact problems on hard materials, the semi-analytical
method developed in [14] can be applied. That method is based on the assumption of the separation between
the adhesive and the repulsive forces, and follows the 5 steps illustrated in Fig. 5:

(i) Identifying the physical contacting asperities using the topology of the contacting surfaces;

(ii) Fitting the contacting asperities profile by a sphere, see e.g. [14, 50, 51], as illustrated in Fig. 6;

(iii) Evaluating the asperity contact forces and the physical contacting areas by applying the analytical
Hertz contact theory [26] on the sphere-fitted asperities;

9



Figure 5: The algorithm of the semi-analytical contact models.
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(a)

Figure 6: An identified contacting asperity extracted from surface topology, see Fig. 3, and its spherical approximation.

(iv) Evaluating the adhesive contact force: first, the area on which the water condenses is identified as the
difference between the area of parts of surface topology with interaction distances smaller than the
capillary range hC , and the sum of physical asperity contacting areas calculated from step (iii); then
the adhesive contact forces are calculated by multiplying the water condensing area with the Laplace
pressure evaluated by Eq. (12);

(v) Computing the contact forces as the sum of (1) the asperity contact forces, resulting from the elastic
interactions and obtained by step (iii), and (2) the adhesive contact force, resulting from Laplace
pressure and evaluated from step (iv).

Inside step (iv), the area of condensing water is calculated in a global way instead of considering each
asperity separately. In that way, the saturation effect in which some water menisci can merge together at
the high humidity levels [4] is accounted for as described in [14]. The apparent contact forces are required
to be evaluated for a discrete set of contact distances {d̄0, d̄0 + ∆d̄, . . . , d̄0 + κ∆d̄} with ∆d̄ the sampling
distance. Therefore, that process is repeated for κ+ 1 times in order to construct an apparent contact force
vs. distance curve, see Fig. 5 for its algorithm sketch.

The model can be extended to account for the vdW forces. Because the vdW force range hvdW =0.228 [nm]
is much smaller than the capillary force range hC and comparable with the penetration of asperities, the
contact forces resulting from vdW stress and elastic deformation stress are evaluated locally at each con-
tacting asperity using Maugis adhesive contact model [48]. In that way, both elastic stress and vdW stress
are accounted for the deformation of asperities. With that assumption the steps (iii) and (v) are modified
to account for the vdW force as:

(iii) Evaluating the asperity contact forces and physical contact areas resulting from vdW forces and elastic
interaction by applying the analytical Maugis adhesive contact theory [48], extended by Kim et al. [65]
for the non-contacting cases, on the sphere-fitted asperities with the input parameters hvdW, σvdW,
and ωvdW given in Tab. 1;

(v) Computing contact forces as the sum of (1) the asperity contact forces, resulting from vdW forces and
elastic interaction obtained by step (iii), and (2) the capillary adhesive contact force, resulting from
Laplace pressure and evaluated from step (iv) as discussed previously,

while the other steps are preserved.
Remarks: (i) These methods are performed based on the generated (or measured) surfaces with the size

of interest, e.g. the size of sub-contact domain lmeso
1 × lmeso

2 . They are thus able to account for the size
effects required in this work. (ii) The Hertz model and Maugis model applied on the sphere-fitted asperities
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are evaluated using the equivalent Young’s modulus Eeq = ((1− ν2
1)/E1 + (1− ν2

2)/E2)−1 where E1, E2, ν1,
ν2 are the Young’s modulus and Poisson ratio of the two contacting bodies. (iii) As both vdW stress and
Laplace pressure are much smaller than the ultimate strength of poly-silicon, and the contacting surfaces
have a small roughness (∼3.5 nm), in this paper the irreversible behaviors are neglected when evaluating the
asperity interaction. For the cases when irreversible deformations become non-negligible [52], the applied
asperity contact models, Hertz and Maugis models, should be replaced, e.g. by the ones developed by L.
Kogut and I. Etsion [53, 54], or by the one developed by L. Wu et al. [8] in the case of cyclic load.

2.3. Stochastic FE model for adhesive contact involved structures using the random apparent contact forces

At the upper scale, for an elastic problem, using the weak formulation stated in Eq. (1) with the upper
scale contact forces given by Eq. (5), the structural behaviors can be identified by solving the FE model
equations

[K]u(θ) = f c(u, θ) + fa, (16)

where [K] is the stiffness matrix, u is the nodal displacements vector, fa is the equivalent nodal external
forces vector resulting from the applied forces, and f c is the equivalent nodal contact forces vector resulting
from the homogenized contact forces defined in Eq. (5) and evaluated using the semi-analytical contact
models developed in Section 2.2.2. The problem is non-linear because the nodal forces f c depend on the
actual configuration u.

Figure 7: 1D contact rectangular element with equally spaced integral points xr used to evaluate the nodal contact forces.

In order to evaluate the nodal contact forces f c corresponding to a realization of random surface S(θ),
this work has recourse to the rectangular type quadrature rule in which the integral points are equally spaced
with a distance lquad chosen to be equal to the meso-scale length, lquad = lmeso, see e.g. Fig. 7. To this
end, the surfaces S(θ) and S̄ are decomposed into Np non-overlapping surfaces Sr(θ) and S̄r respectively,
with r = 1, ..., Np and with size lmeso

1 × lmeso
2 . The central point of the surfaces S̄r is considered as the

integral point xr. For each sub-contact domain, the apparent adhesive contact force f̄r(θ), defined by Eq.
(3), is evaluated using the semi-analytical contact models developed in Section 2.2.2. The nodal forces, f c,n,
at the node n belonging to the mean surfaces S̄ are computed by applying the FE discretization on the
homogenized contact force defined in Eq. (5), leading to

f c,n(u, θ) =

Np∑
r=1

f̄r(d̄r(u), θ)ΨFE,n(xr)nS̄(xr)AS̄r , (17)

where ΨFE,n is the shape function of the corresponding node, d̄r is evaluated as the normal distance from the
integral point xr to the encountering plane at the actual configuration defined by u, and nS̄ is the normal
vector of mean surface S̄.

The probabilistic structural behaviors are obtained by solving the set of Eqs. (16) using the input of the
random apparent contact forces which are either explicitly evaluated, as previously discussed, or generated
through a constructed stochastic model, see next Section.

Remarks: (i) For conventional multiscale models in which the apparent contact force is deterministic,
the distance between two adjacent integral points is much bigger than the meso-scale length, lquad � lmeso.
For the present case, the apparent contact forces are non-deterministic, see Fig. 2(c), in order to account for
the size effect on their scatter, the distance between two adjacent integral points, is chosen to be equal to the
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meso-scale length, lquad = lmeso. This choice will be justified in Section 4.4.1 where the spatial correlation
will be discussed. This is also the reason of applying the quadrature rule with equally spaced points when
evaluating the nodal contact forces. (ii) The probabilistic multiscale framework is developed for the following
cases: the mean surfaces of the contacting rough surfaces are non-parallel, however at the meso-scale size
lmeso
1 × lmeso

2 , the non-parallel degree is much smaller than the ratio between the considered roughness and
the meso-scale length. In this paper, that assumption is valid when considering the application to MEMS
cantilever beams, see analyses in Section 4.2. In the following, two scenari in which that assumption is not
valid are discussed. (a) When the non-parallel degree at the meso-scale is comparable with or larger than the
ratio between the considered roughness and the meso-scale length, the multiscale method should be modified
to account for the lack of parallelism. For instance, when evaluating the meso-scale apparent contact forces
Eq. (3), in addition to the contact distance d̄r and the uncertainty parameter θ, other parameters such as
the surfaces interaction angle can be added. In this case, the meso-scale contact forces are evaluated for
non-parallel mean surfaces according to the values of these additional parameters. (b) When the structural
contact geometries are not between two surfaces anymore, e.g. between an edge of a triangular prism
and a surface, the multiscale approach is modified by changing the notion of the mean surface S̄ by the
successive interactions of two non-parallel surfaces couples. For the sake of simplification when evaluating
the apparent contact forces and when developing the stochastic method, we assume that the surfaces are
nominally parallel, the cases (a) and (b) being beyond the scope of this paper.

3. Effective probabilistic representation of the random apparent adhesive contact forces

Figure 8: The two uncertainty propagation methods used to evaluate the probabilistic behaviors of structures involving adhesive
contacts: the direct MCS multiscale method and the stochastic model-based multiscale method.

In order to quantify the uncertainties of structural behaviors involving adhesive contacts, two uncertainty
propagation methods, the direct MCS method and the stochastic model-based method, illustrated in Fig. 8,
are considered to be coupled with the multiscale model. The purpose of developing the latter is to overcome
the computational inefficiency nature of the direct MCS method. The direct MCS method explicitly evaluates
the sub-contact domain random apparent adhesive contact forces, while the stochastic model-based method
constructs a stochastic model which is then used to generate realizations of these apparent contact forces.

Direct MCS multiscale method. The direct MCS multiscale method follows 4 steps, see Fig. 8:

(i) From the measurements of contacting surfaces, e.g. using AFM, the PSD function can be estimated,
see Section 2.2.1;
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(ii) NMC surfaces with the size of the contacting surface, S(k) with k = 1, . . . , NMC (S(k) the simplified
form of its detailed notation S(θk)), are generated using the estimated PSD, see Section 2.2.1;

(iii) Each generated surface S(k) is discretized into Np non-overlapping surfaces of size lmeso
1 ×lmeso

2 , denoted
by S(k),r with r = 1, . . . , Np, and the corresponding apparent contact forces, f̄ (k),r with r = 1, . . . , Np,
are evaluated using the methodology described in Section 2.2.2;

(iv) The structural behavior corresponding to the kth generated surface S(k) is computed by integrating
the Np apparent contact forces, f̄ (k),r with r = 1, . . . , Np, into the FE model of the studied structure
using Eq. (17). To avoid the numerical obstacles, the evaluated contact forces are curve fitted with a
C1 function derived from Morse potential, as described in Section 3.1, for their evaluation in the FE
model. This step is repeated NMC times corresponding to the NMC generated surfaces S(k). From
the set of NMC evaluated structural behaviors we can identify the structural properties distribution.

The point of computational resources complexity is the step (iii) in which there are NMC × Np apparent
contact forces required to be evaluated.

Stochastic model-based multiscale method. To reduce the computational cost, we construct a stochastic
model that approximates the distribution of the random apparent contact force and is used to generate the
contact force realizations. The input required to develop the stochastic model is m apparent contact forces
explicitly evaluated from the direct MCS method. The cost of computational resources is reduced thanks to
the fact that m� NMC ×Np. We remark that the stochastic model-based multiscale method also performs
MCS however in an indirect way through the stochastic model of apparent contact forces. The 5 steps of
the method are illustrated in Fig. 8. Among them, only the steps (IV,V), the construction and the use of
the stochastic model of the random apparent contact forces, are not discussed yet, and are the main object
of this section.

To construct the stochastic model, the apparent contact force f̄r(d̄), Eq. (3), is first parametrized and
represented by a vector v to be defined. As the apparent contact forces are uncertain, their representative
vectors v are treated here as a random vector, denoted by V. The randomness of the parameters vectors V is
then represented by a stochastic model using the gPCE. With the constructed stochastic model, NMC ×Np
apparent contact forces can then be generated efficiently.

In the developments of this section, we discuss the main ingredients of the stochastic model-based
multiscale method for adhesive problems:

(i) The parametrization of the apparent contact forces by the parameters vectors v;

(ii) The construction of a gPCE model for the random parameters vectors V.

3.1. Parametrization of the apparent adhesive contact forces

The calculated apparent adhesive contact forces are first characterized by a set of physical parameters
and then fitted by an analytical function derived from the Morse potential.

3.1.1. Characterization of the apparent adhesive contact forces

In the context of adhesive problems, there are 4 key features characterizing the adhesive contact force f̄
(the superscript ”r” is dropped for simplicity), Eq. (3), see Fig. 9, which are listed here below.

(i) The maximum pull-out adhesive force f̄max defined by

f̄max = max
d̄
{−f̄(d̄)} > 0; (18)

(ii) The distance d̄max at which the apparent contact force reaches its maximum adhesive force

d̄max = arg max
d̄
{−f̄(d̄)}; (19)
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Figure 9: Curve fitting of a typical apparent adhesive contact force. Left figure: An explicitly evaluated apparent contact force,
see Section 2.2, and its parameters. Right figure: The evaluated apparent contact force represented by the analytical function,
Eq. (22).

(iii) The apparent adhesive energy, ē, defined by

ē = −
∫
R

1≤0{f̄(d̄)}f̄(d̄)dd̄ > 0, (20)

where 1≤0{·} = 1 if · ≤ 0 and zero otherwise;

(iv) The threshold distance d̄limit at which the apparent contact force reaches a certain limit positive force
f̄limit defined as the maximum considered compressive force of interest. Beyond this limit force, the
compressive behavior dominates the adhesive behavior, and therefore is not in the scope of an adhesive
contact study.

These 4 key features of the adhesive contact force are represented by the parameters vector

v = [ē, f̄max, d̄max, d̄limit]
T. (21)

3.1.2. Curve fitting of the apparent adhesive contact forces using analytical function

The following function is considered to fit the apparent adhesive contact forces

φ(d̄) =

{
f̄max(e−2aright(d̄−d̄max) − 2e−aright(d̄−d̄max)) for d̄ ≥ d̄max;

f̄max(e−2aleft(d̄−d̄max) − 2e−aleft(d̄−d̄max)) for d̄ < d̄max.
(22)

In fact, the fitting analytical function is derived from the well-known Morse potential2. By separating the
two wings with the different coefficients (aright and aleft), the proposed function has 4 fitting coefficients, one
more coefficient than the original Morse formulation. This fitting function reaches its maximum adhesive
force f̄max at a distance d̄max. The other coefficients of the fitting function {aright, aleft} are identified by
solving the following equations

f̄max(e−2aleft(d̄limit−d̄max) − 2e−aleft(d̄limit−d̄max)) = f̄limit;

−
∫
R

1≤0{φ(d̄; aright, aleft)}φ(d̄; aright, aleft)dd̄ = ē.
(23)

One can thus obtain the physical parameters vector, Eq. (21), from a given apparent contact force and also
can reconstruct that apparent contact force knowing its physical parameters vector using Eq. (22). In other
words, an apparent contact force can be represented by its parameters vector v, Eq. (21).

2We remark that the Morse potential, used to fit energy functions, and its derivative, used to fit distance-force curves, have
the same characteristics as they are composed by the exponential functions. Thus, for simplicity, the analytical function in Eq.
(22) uses Morse potentials directly instead of its derivative to fit the adhesive contact forces.
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3.2. Construction the generator of the random apparent adhesive contact forces using the gPCE

The main idea of the present work is to construct a stochastic model using the gPCE to generate
the realizations of parameters vectors v from which the corresponding apparent adhesive contact forces are
obtained using the adhesive contact functions defined in Eq. (22). The stochastic model is constructed based
on a set of m explicitly evaluated apparent contact forces, from which the set of m corresponding physical
parameters vectors {v(1), . . . ,v(m)} –samples of the random vector V– is obtained using the parametrization
process described in Section 3.1.

As it will be shown in Section 4, the spatial correlation between two adjacent integral points of the
random apparent contact forces f̄r is negligible. It is due to the two facts: (i) the distance between two
integral points lquad = lmeso, see Fig. (7), is longer than the correlation length lm of the contacting surface
as discussed in Section 2, and (ii) the contact happens only at the highest asperities with a physical contact
area of O(1 %) of the apparent area. Therefore, the stochastic model developed in the following does not
take the spatial correlation into account. For the cases of non-negligible spatial correlation, the model can
be extended, e.g. by coupling a Karhunen-Loève expansion with the PCE as developed in [31, 32, 36].

In the considered problem, the construction of the stochastic model must deal with two challenges: (i)
the stochastic model must respect the physical bounds of the modeled random variables i.e. their generated
samples are preconditioned by those bounds; and (ii) the effect of curse of dimensionality [37], i.e. the
number of orthogonal polynomials in a gPCE model which increases exponentially with the dimensionality,
must be minimized. These challenges are accounted for in Section 3.2.1, before developing the stochastic
model in Section 3.2.2.

3.2.1. Input data processing

Figure 10: The two data processing procedures, treatment of physical bounds, and dimension reduction.

In this section, the two data processing procedures illustrated in Fig. 10 are described. The first procedure
introduces the random vector Q which accounts for the physical bounds applied on V. In the second
procedure, a statistical dimension reduction is applied on the random vector Q and the reduced dimension
random vector H̃ is obtained. These two procedures are accomplished in such a way that their inverse
processes, H̃ → Q → V exist. As a result, the stochastic model for the random vector V is constructed
indirectly through the random vector H̃ in Section 3.2.2.

Introduction of physical bounds. The random vector V is constrained by the physical conditions:

(i) The 2 variables {ē, f̄max} are non-negative; and

(ii) The distance d̄max at which the apparent contact force reaches its maximum adhesive force is larger
than the threshold distance d̄limit, see Fig. 9.

These two constraints have to be taken into account in the way of constructing the stochastic model to
ensure consistency. Toward this end, we introduce a standardized random vector Q valued in R4 for which
its samples {q(1), . . . ,q(m)} are evaluated from the parameters vectors {v(1), . . . ,v(m)} as

q(k) =
[ log(ē(k))

σlog(ē)
,

log(f̄
(k)
max)

σlog(f̄max)

,
d̄

(k)
max

σd̄max

,
log(d̄

(k)
max − d̄(k)

limit)

σlog(d̄max−d̄limit)

]T
, with k = 1, . . . ,m , (24)

where σ· is the standard derivation of the random variable · evaluated from m samples {v(1), ...,v(m)}, e.g.

σlog(ē) ≈

[∑m
k=1

(
log(ē(k))− E{log(ē)}

)2
m− 1

]1/2

, (25)
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with

E{log(ē)} ≈
∑m
k=1 log(ē(k))

m
. (26)

The transformation in Eq. (24) is bijective and its inverse is given by

v =
[
exp(q1σlog(ē)), exp(q2σlog(f̄max)), q3σd̄max

, q3σd̄max
− exp(q4σlog(d̄max−d̄limit))

]T
. (27)

Using the stochastic model that is developed in Section 3.2.2, one can generate realizations q, from which
the corresponding realizations v can be evaluated using Eq. (27), while respecting their physical bounds. In
Eq. (27), the superscript index (k) has been neglected in order to conserve its generality which is useful for
the development of the generator of the apparent contact forces discussed in Section 3.2.2.

Linear dimension reduction. To reduce the effect of curse of dimensionality, a linear dimension reduction
process is applied before the gPCE to represent the randomness of the reduced dimension random variables.
The idea of the linear dimension reduction is to seek for a few orthogonal linear combinations of the original
variables with the largest variances. In this work, the linear dimension reduction is performed using the
principal component analysis of the covariance matrix [55, 56, 57].

Using the input data of m vectors {q(1), . . . ,q(m)} evaluated from Eq. (24) one can estimate their mean
vector q̄ and their covariance matrix [CQ] as

q̄ ≈
∑m
k=1 q(k)

m
, [CQ] ≈

∑m
k=1(q(k) − q̄)(q(k) − q̄)T

m− 1
. (28)

Applying the principal component transformation, we deduce the random vector H with its realization η
evaluated as

ηT = (q− q̄)T[A][Λ]−1/2, (29)

where [A] = [a1, . . . ,a4] is a matrix of the 4 eigenvectors of the matrix [CQ] satisfying [A][A]T = I4 with
I4 the 4-dimensional unit vector, and [Λ] = diag(λ) is a diagonal matrix of the 4 corresponding ordered
eigenvalues λ1 ≥ ... ≥ λ4 ≥ 0. The random vector H is characterized by a zero mean and identity covariance
matrix, and its components are uncorrelated in the sense of covariance 3. The 4-dimensional random vector
Q can be represented by the Ng-dimensional (Ng ≤ 4) random vector H̃ with its realization η̃ defined by
the first Ng components of vector η,

η̃ = {η1, . . . , ηNg}, (30)

where Ng is the reduced dimension. That dimensional reduction is obtained by the following approximation,

qi ' q̄i +

Ng∑
j=1

√
λjAijηj , for i = 1, . . . , 4. (31)

The superscript ”˜” is added in the notations H̃ (η̃) in order to indicate the reduced dimension quantities,
and to differ them from the original quantities H (η). The number of reduced dimensions Ng can be chosen
in order to verify the condition

ErrDR(Ng) =

∑4
i=Ng+1 λi∑4
i=1 λi

< ε, (32)

where ε� 1 is the admitted error.

3We remark that uncorrelated random variables are not necessarily independent
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3.2.2. Stochastic model

Because the sequential transformation H̃
Eq. (31)−−−−−→ Q

Eq. (27)−−−−−→ V exists, the reduced dimension random
vector H̃ can represent the random vector V of apparent contact force parameters. In this section, a
stochastic model is constructed in order to generate the realizations of the random vector H̃ using its m
explicitly evaluated samples {η̃(1), ..., η̃(m)}, obtained using Eqs. (29, 30), as input data. The stochastic
model developed in this paper is a truncated Nd-order gPCE mapping the random vector Ξ, uniformly
distributed in the Ng-dimensional unit cube [0, 1]Ng , to the random vector H̃PC, which is enforced to be

an approximation in terms of distribution of the objective random vector H̃. That truncated gPCE is
formulated as

H̃PC =

N∑
α=1

cαΨα(Ξ)︸ ︷︷ ︸
Nd-order gPCE

d.
≈ H̃, (33)

where
d.
≈ means the approximation in terms of distribution, c1, . . . , cN are vectors of coefficients in RNg to

be identified, and where Ψ1(Ξ), . . . ,ΨN (Ξ) are the renumbered orthogonal Legendre polynomials, shifted
to agree with the domain of random vector Ξ, [0, 1]Ng , and whose orders are lower than or equal to Nd. The
number of polynomials of this expansion is N = (Nd +Ng)!/Ng!Nd!.

The coefficients c1, . . . , cN are identified in order to enhance the approximation in terms of distribution as
stated by Eq. (33). During the identification process, the distribution of the random vector H̃ is estimated
from its m explicitly evaluated samples {η̃(1), ..., η̃(m)} using the multivariate kernel density estimation
detailed in AppendixB. The identification of gPCE coefficients is detailed in AppendixC, and summarized
in the following. There exists an isoprobabilistic transformation, the inverse Rosenblatt transformation
[39], matching each sample of the random vector Ξ to a sample of the random vector H̃, and defined
using cumulative distribution functions. The coefficients of the gPCE model are identified by projecting
that inverse Rosenblatt transformation on the orthogonal Legendre polynomials [58]. That projection is
numerically implemented by the Gauss quadrature rule with negligible computational cost.

Owing to the stochastic model, from the generated realizations of the distribution random vector Ξ, the
corresponding realizations of the random vector H̃ are obtained.

3.2.3. Summary

In this section, the methodology to construct the stochastic model of the random apparent adhesive
contact forces, and its use to generate the realizations of these forces, are summarized.

The construction of the stochastic model for random apparent contact forces includes 3 steps,

(i) Acquiring input data, see the boxes indexed (II) and (III) in Fig. 8, which consists in

– Generating m IID contacting surfaces with the size of the sub-contact domain lmeso
1 × lmeso

2 using
the methodology developed in Section 2.2.1;

– Evaluating the m corresponding apparent contact forces using the method described in Section
2.2.2;

– Parametrizing the evaluated apparent contact forces using the method described in Section 3.1
to obtain m physical parameters vectors {v(1), . . . ,v(m)};

(ii) Processing input data, contributing to the task of the box (IV) in Fig. 8, by

– Evaluating the m corresponding vectors {q(1), . . . ,q(m)} using Eq. (24); and

– Performing the linear dimension reduction which consists in evaluating the m 4-dimensional
vectors {η(1), . . . ,η(m)} using Eq. (29) and obtaining their reduced dimension (Ng ≤ 4) vectors
{η̃(1), . . . , η̃(m)}, Eq. (30);

(iii) Identifying the gPCE coefficients, see the box (IV) in Fig. 8, which consists in
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– For a chosen value of gPCE order Nd, defining the (Nd + 1)Ng Gauss quadrature points on the
hypercube [0, 1]Ng ;

– For each Gauss point, evaluating the distribution of the random vector H̃ using the multivariate
kernel density estimation method from the input data {η̃(1), . . . , η̃(m)}, see AppendixB, and then
evaluating the inverse Rosenblatt transformation, see AppendixC;

– Evaluating the gPCE coefficients by projecting the inverse Rosenblatt transformation on the
orthogonal Legendre polynomials system using the Gauss quadrature rule, see AppendixC.

Using the stochastic model, the apparent contact forces can be generated, see the box (V) in Fig. 8, by
following 4 steps

(i) Generating realizations of the random vector Ξ;

(ii) Evaluating the corresponding realizations of the random vector H̃PC using Eq. (33);

(iii) Evaluating the corresponding realizations of the random vectors QPC and VPC using Eq. (31) and
Eq. (24) respectively;

(iv) Constructing the corresponding apparent contact forces using the analytical function described in
Eq. (22).

The generated apparent contact forces are then integrated into the FE model at the structural scale to
evaluate the realizations of the considered structural behaviors as discussed in Section 2.3, see the box (VI)
in Fig. 8.

4. Numerical verification on the stiction failure of micro cantilever beam

The stochastic multiscale methods are applied to quantify the uncertainties of the humid stiction phe-
nomenon of poly-silicon micro cantilever beams, as illustrated in Fig. 1. In this phenomenon, upon an
initial contact, the menisci can develop, and the cantilever beams can permanently adhere to their substrate
due to the capillary forces. The effect of vdW interaction is excluded in this section but is accounted for
in Section 5. One of the important stiction configurations of micro cantilever beams is the S-shape con-
figuration [59], see Fig. 1(a), in which the crack length defined as the horizontal distance from the crack
tip to the clamp is an important quantity characterizing the considered problem. A shorter crack length
indicates a higher adhesive energy. As it is discussed throughout the work, the phenomenon is uncertain,
and the probabilistic behaviors of the quantities of interest, such as crack lengths and internal energies,
need to be identified. Through the evaluation of the uncertainties of the quantities of interest, this section
provides a numerical comparison of the two uncertainty propagation methods, the direct MCS method and
the stochastic model-based method in terms of results and computational efficiency at Section 4.5.

4.1. Problem setting

A cantilever beam structure, illustrated in Fig. 1, is considered. The cantilever beams have a length
l = 1500 µm, a width w = 30 µm, a thickness t = 2.62 µm, and are clamped at a height h = 1.9 µm from
their substrates. The considered cantilever beams and the substrate surfaces are both made of poly-silicon
for which the Young’s modulus E = 163 GPa, and water contact angles ρ1 = ρ2 ' 00. That configuration
corresponds to the stiction experiments reported by DelRio et al. in [5]. In this section, humid condition
with relative humidity RH = 85 % is considered, and the vdW interaction is excluded.

Due to the lack of experimental data, the PSD function proposed by the authors in [14], which is a
self-affine PSD function [60] of the equivalent surface constructed using the experimental data reported in
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Figure 11: The PSD functions constructed using the data from the experiments reported in [5] and [9].

Table 2: The constructed PSD functions parameters and their generated surface properties corresponding to the experiments
reported in [5] and [9]. The quantities with a “∗” marker are the measurement data or parameter evaluations reported in [5, 9].

Constructed PSD for tests reported by DelRio et al. [5] E. Soylemez et al. [9]
Constructed PSD parameters

ζmax [ rad · µm−1] 289 283
ζ0
r [ rad · µm−1] 19.4 40
s0
Z [nm4] 6.46× 103 0.5× 103

s1
Z [nm4] 6.46× 10−3 50× 10−3

Generated surface statistical properties
Root mean square roughness [nm] 3.5 ∗ 2.2 ∗

1st order derivatives variance [-] 0.0035 0.0057
2nd order derivatives variance [µm−2] 9.1 45

GW model [15] parameters
Equivalent spherical asperity radius [nm] 220 100 ∗

Asperity height standard derivation [nm] 3.3 2.1
Asperity density [µm−2] 80.1 242

[5], is used. That PSD function is given by

sZ(ζr) =


s0
Z if 0 ≤ ζr < ζ0

r ;

s0
Z

(
ζr
ζ0
r

)log10

(
s1Z
s0z

)
/log10

(
ζmax
ζ0r

)
if ζ0

r ≤ ζr ≤ ζmax ;

0 if ζmax < ζr ;

(34)

where ζr =
√
ζ2
1 + ζ2

2 . The parameters of the PSD function constructed for the experiments reported
in [5], and the properties of its generated surfaces, are reported in the 2nd column of Tab. 2. With that
proposed PSD function, illustrated in Fig. 11(a), the contact surfaces can be generated using the methodology
described in Section 2.2.1, a realization of which is illustrated in Fig. 3. The surfaces generated using the
proposed PSD function are isotropic, stationary, and have the root mean square roughness of rms = 3.5 nm
and a correlation length of lm = 0.7 [µm]- the minimum length for which the autocorrelation function of the
rough surface, defined in Eq. (6), is smaller than 1 % of the variance of surface heights. Even though it is
not applied in this paper, the parameters of the GW model [15] of the generated surfaces are also reported in
Tab. 2 for informative purpose 4. In Fig. 11 and Tab. 2, the PSD function constructed for the experiments

4In the GW model, a random surface with a Gaussian heigth distribution is modeled by a set of spherical asperities of
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reported in [9] is also reported for comparison purpose, as it will be used in Section 5 when the numerical
results are validated with the experimental data reported in both publications [5, 9]. The quantities with a
“∗” marker reported in Tab. 2 are the measurement data and parameter evaluations reported in [5, 9], which
are used as the matching conditions when constructing the PSD function. As the set of provided parameters
is not enough to build the PSD, we complete it by considering reasonable values from other experimental
surfaces processed using a similar fabrication methodology [4, 14].

In the following, the multiscale model of the adhesive cantilever beam is first analysed on a surface
realization of the equivalent surface S, before being coupled with the uncertainty quantification methods.

4.2. Implementation of the multiscale FE model for micro cantilever beam undergoing stiction

A surface S corresponding to the beam bottom surface of size l×w can be generated using the method-
ology described in Section 2.2.1 from the proposed PSD function in Eq. (34). To reduce the computational
cost, for RH = 85 %, the length of the numerical beam is chosen as l = 600 [µm] (smaller than the exper-
imental beams length of 1500 [µm]), as the crack lengths obtained from that experiments at RH = 85 %
are within the 180-250 [µm] range. The surface is then divided into Np non-overlapping surfaces Sr of size
lmeso × w, with r = 1, . . . , Np and Np = l/lmeso, corresponding to Np sub-contact domains. The value of
lmeso is chosen to be 3 µm and the corresponding value of Np is 200. That choice will be justified later in this
section by a convergence analysis. The apparent adhesive contact forces are evaluated for each sub-contact
domain by solving the meso-scale contact problem, see Fig. 2(b), using the methodology described in Section
2.2.2 and fitted via the analytical function defined by Eq. (22). They are then integrated into a 1D elastic
FE model of cantilever beam using Eq. (17) to evaluate the corresponding structural behavior. In the FE
model of cantilever beam, the stiffness matrix [K], see Eq. (16), is calculated using Euler-Bernoulli beam
theory. In the following, the main numerical features of the multiscale FE model of the micro cantilever
beam are discussed.

Failure simulation process. The menisci develop when the micro cantilever beams touch their substrate
due to external forces. Because the Laplace pressure inside the menisci pulls the beam, the contact zone
propagates. This process can lead to the stiction of the cantilever beams to their substrate, see Fig. 1(a).
In the present numerical model, to predict the stiction configuration of a micro cantilever beam with the
shortest possible crack length, we perform a loading-unloading simulation. The process is illustrated in
terms of the evaluation of the beam central line in Figs. 12(a,b) and in terms of the evaluation of beam
internal energy in Fig. 12(c). The two phases of the process are described in the following.

(i) The cantilever beam is first loaded by an increasing external force applied at a distance, e.g. 60 µm,
from the clamp. The external force pushes the cantilever beam into contact with the substrate, see
Fig. 12(a). When a contact zone is initiated, the apparent adhesive contact forces are activated,
pull the cantilever beam on its substrate, and, as a consequence, the contact zone develops. The
loading process is ended when the loaded crack length reaches a certain value which is smaller than
the expected minimum crack length. The pull-in phenomenon, see Figs. 12(a, c), characterized by
the simultaneous increases of the internal energy resulting from the increase of the beam deformation,
is observed during the loading process. Because the apparent contact forces of two different sub-
contact domains are different, the pull-in phenomenon occurs multiple times. That phenomenon is
also experimental observed in [9].

(ii) The applied load is then gradually decreased to zero, see Fig. 12(b). At the end of the unloading
process, the failure configuration can be obtained, see Fig. 12(d). As during the loading process, the
pull-out phenomenon, see Fig. 12(b,c), characterized by the simultaneous decreases of the internal
energy, can be observed multiple times during the unloading process.

identical radius. The parameters describing the spherical asperities –the equivalent radius, the variance of asperity heights,
and the asperities density– are derived from the statistical properties of considered surfaces.
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Figure 12: The failure simulation process. (a) The evaluation of the beam central line during the loading process. The pull-in
marked as (*) is illustrated in the evaluation of internal energy, see Fig. 12(c). (b) The evaluation of the beam central line
during unloading process. (c) The evaluation of internal energy during loading and unloading process. The pull-in marked as
(*) is illustrated in the evaluation of the beam central line, see Fig. 12(a). (d) The obtained configuration of beam central line
at the stiction failure state.
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Figure 13: The convergence analysis with respect of the meso-scale length lmeso and of the element lengths le in terms of the
internal energies. (a) The convergence analysis with respect of the meso-scale length lmeso. (b) The convergence analysis with
respect of the element lengths le with meso-scale length lmeso = 3 µm.

Determining the meso-scale length. The meso-scale length lmeso, see Fig. 2(b), is determined to satisfy the
two conditions (i) the variation of the beam central line displacement inside a sub-contact domain is negligible
in comparison with the root mean square roughness, and (ii) lmeso ≥ lm in order for the homogenization
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process to hold. For the first condition, we can perform a convergence analysis of the beam internal energy
in terms of lmeso. Fig. 13(a) illustrates the internal energy at the stiction configuration evaluated by the
FE models using different meso-scale lengths lmeso on the same realization of the contact surface S. It is
observed that the solution is converged when reducing the length lmeso as the variation of the beam central
line displacement inside a sub-contact domain is decreased. These numerical results suggest that we can
choose the meso-scale length as lmeso = 3 µm for which the condition lmeso > lm = 0.7 µm is also verified.

Convergence of element length. The cantilever beam is descretized into finite elements of size le × w. The
convergence with respect of element size le is illustrated in Fig. 13(b). These numerical results suggest that
we can choose the element length as le = 15 µm. This means that for each element in the beam FE model,
there are 5 integration points, corresponding to 5 apparent contact forces, to evaluate the equivalent nodal
forces Eq. (17).

In the following, the uncertainty propagation methods, the direct MCS method and the stochastic model-
based method, described in Section 3 are coupled with the muti-scale FE model.

4.3. Implementation of direct MCS multiscale method

Using the random surface generator described in Section 2.2.1, one can generate NMC = 1000 surfaces
S(k) with k = {1, . . . , NMC} of the beam size l×w from which the NMC corresponding structural behaviors
are computed using the multiscale FE model as implemented in Section 4.2. The probabilistic behaviors of
micro beams, e.g. distribution of crack lengths, are then evaluated and will be compared with the stochastic
method in Section 4.5.

4.4. Implementation of the stochastic model of random apparent adhesive contact forces

5 10 15 20 25
−2.5

−2

−1

0

1

2

2.5

d̄[nm]

f̄
[M

P
a
]

(a) 10 evaluated contact forces (highlighted
among the other 200)

5 10 15 20 25
−2.5

−2

−1

0

1

2

2.5

d̄[nm]

f̄
[M

P
a
]

(b) 10 generated contact forces (highlighted
among the other 200)

Figure 14: The IID realizations of the apparent adhesive contact forces explicitly evaluated by MCS (a), and generated by
gPCE model (b).

The stochastic model of the random apparent adhesive contact forces is developed using an input data
set of m = 5000 (� NMC×Np = 1000×200) explicitly evaluated apparent adhesive contact forces obtained
by the MCS method. The evaluation of these contact forces is achieved by generating m IID surfaces
of size lmeso × w using the surface generator described in Section 2.2.1 from PSD function Eq. (34), and
evaluating the m corresponding apparent contact forces by the method developed in Section. 2.2.2. The
choice of m = 5000 is explained in Section 4.4.3. As discussed in Section 4.2, the meso-scale length lmeso is
determined by 3 µm.

Ten samples of the evaluated apparent contact forces are illustrated in Fig. 14(a). The equivalent distance
at which the apparent contact force vanishes due to an equivalence between adhesive and repulsive forces
ranges between [8.3 nm− 10 nm] corresponding to [2.4× rms− 2.9× rms]. The physical contact area at the
equivalent distance is observed to be [0.2 %− 0.7 %] of the apparent area and there are [80− 130] asperities
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entering into physical contact. Because the Laplace pressure (22 MPa for RH = 85 %) is much smaller than
the stiffness of the considered material polysilicon (163 GPa), the area occupied by menisci is much bigger
than the physical contact area at the distance for which the force vanishes. That menisci area is observed to
be in the range [14 %−29 %] of the apparent area. Because of the small physical contact area and the small
number of contacting asperities, there exist uncertainties on the apparent contact forces as it is observed in
Fig. 14(a).

Using the parametrization process described in Section 3.1, the data set is represented by m = 5000
samples {v(1), . . . ,v(m)} of the random parameters vector V. In the following, the negligibility of the
spatial correlation of the random contact forces is numerically validated, and then the stochastic model of
the random vector V is constructed from those m input samples and following the two previously detailed
processes: input data processing and gPCE model.

4.4.1. Spatial correlation of the apparent adhesive contact forces
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Figure 15: The normalized spatial correlations of the random variables ē , f̄max, d̄max, d̄limit (The correlation curves are close
to each other).

The normalized spatial correlations of components Vi with i = 1, . . . , 4 of the random vector V are
defined by

E[(V ri − E(Vi))(V
r′

i − E(Vi))]

E[(Vi − E(Vi))2]
, with {r, r′} ∈ {1, . . . , Np}2, (35)

and are illustrated in Fig. 15. This figure shows that the spatial correlations can be neglected, as in the
multiscale model two adjacent sub-contact domains are such that |r − r′| = 1, see Fig. 7.

4.4.2. Identification of the reduced dimensions number
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Figure 16: The error due to the dimension reduction process ErrDR.

To lower the effect of the curse of dimensionality, the linear dimension reduction reported in Section
3.2.1 is applied. From the input data set {v(1), . . . ,v(m)} with m = 5000, the corresponding samples
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{q(1), . . . ,q(m)} of the random vector Q are evaluated by Eq. (24). Using the principal component trans-
formation given by Eq. (29), the m samples {η(1), . . . ,η(m)} of the orthogonal random vector H can be
obtained. The dimension reduction error ErrDR can then be evaluated using Eq. (32) and is illustrated in
Fig. 16. These numerical results of the error ErrDR suggest that the number of reduced dimensions can be
chosen as Ng = 3 with the corresponding error ErrDR = 0.07 %. Although there is only one dimension less,
the number of the coefficients of gPCE model is lowered by (Nd+4)/4 times, e.g (Nd+4)/4 = 4 for Nd = 12,
which justifies the process. From m samples {η(1), . . . ,η(m)}, the corresponding reduced dimension vectors

{η̃(1), . . . , η̃(m)} are obtained as η̃(k) = {η(k)
1 , η

(k)
2 , η

(k)
3 } with k = 1, . . . ,m.

4.4.3. Construction the gPCE representation

The input data for the construction of the gPCE model are m vectors η̃(k) = {η(k)
1 , η

(k)
2 , η

(k)
3 } with

k = 1, . . . ,m. The value of m is chosen such that the randomness of the vector η̃ is well captured with m
input vectors {η̃(1), . . . , η̃(m)}. During the coefficients identification of the gPCE model, the distribution of

the random vector H̃ is approximated by the multivariate kernel density estimation method, see AppendixB.
The larger the value of m, the better the approximation. In AppendixB.2, the convergence analysis shows
that m can be chosen by 5000.

The identification of the gPCE model coefficients in Eq. (33) is detailed in AppendixC.2. The con-
vergence analysis in AppendixC.2 shows that the truncated order of the gPCE model can be chosen as
Nd = 12. With that constructed gPCE model, the samples of the random vector H̃PC are generated. The
comparisons between random vector H̃PC, generated by gPCE model, and the reference one H̃, obtaining
from {η̃(1), . . . , η̃(m)}, are illustrated in Fig. 17 in terms of the marginal and joint distributions. As it can
be observed from the illustrations in Fig. 17 as well as through the errors analysis in AppendixC.2, the
constructed 12-order gPCE model approximates well the distribution of the random vector H̃.

4.4.4. Identification of the probability of beam stiction failure using the constructed stochastic model

With the direct MCS multiscale model implemented in Section 4.3, NMC = 1000 realizations of the
beam failure structure are required in order to evaluate the distribution of the quantities of interest, e.g. the
distribution of crack lengths, see the next subsection. Therefore, using the constructed stochastic model,
we generate NMC × Np realizations of the reduced dimension random vector H̃PC using Eq. (33), where
NMC = 1000 is the number of FE simulations and Np = 200 is the number of sub-domains for the numerical
beam length l = 600 µm. The corresponding realizations of the random vectors QPC and of the random
vector VPC are then successively evaluated using Eq. (31) and Eq. (27), respectively. The apparent adhesive
contact forces are constructed from VPC using the analytical function described in Eq. (22). Ten generated
apparent adhesive contact forces are illustrated in Fig. 14(b). Integrating each set of Np generated apparent
contact forces into the FE model developed in Section. 4.2, the corresponding behavior, e.g. crack length, is
evaluated. From the results set of NMC FE simulations, the statistical properties of the structural behavior
are identified and will be compared with the direct MCS method in Section 4.5.

4.5. Comparison between the two uncertainty propagation methods

The two uncertainty propagation methods, the direct MCS method as the reference and the stochastic
model-based method, see Fig. 8, are compared in terms of the distributions of the random apparent adhesive
contact forces and of the distributions of the predicted quantities of interest. In addition, a comparison of
the computational efficiency of the two methods is performed.

The distributions of random meso-scale apparent adhesive contact forces. As it is can be observed from
Fig. 14, the explicitly calculated contact forces and the generated ones, and from Fig. 18, the comparison in
terms of the distributions between the random parameters vector VPC, simulated by the stochastic model-
based method, and the reference one V evaluated from the m explicitly evaluated samples {v(1), . . .v(m)},
the stochastic model approximates accurately the distribution of the random vector V.
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Figure 17: The convergence analysis of the distributions of the random vector H̃PC in terms of gPCE model order Nd. (a,c,e)

The comparisons between the marginal distributions, pHi
with i = 1..3, of H̃PC obtained by the stochastic model with the

reference ones obtained from the m explicitly evaluated contact forces. (b,d,f) The comparisons between the joint bivariate

distributions, pHiHj
with {i, j = 1, . . . , 3}, of H̃PC obtained by the stochastic model with the reference ones obtained from

the m explicitly evaluated contact forces.

The distribution of crack lengths. By integrating the apparent adhesive contact forces, which can be either
evaluated by the direct MCS method or generated using the constructed stochastic model, into a FE model
of the cantilever beams we can evaluate the crack lengths, and quantify their uncertainty. The reported
numerical crack length is defined as the length from the beam clamp to crack tip which is the separating
point between the attached part on which the interaction forces are not zero and the unattached part with
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Figure 18: The comparison between the marginal distributions of the random vector VPC generated by gPCE model and the
references obtained from the m explicitly evaluated contact forces.

vanishing interaction forces, see Fig. 1(a). The comparison between the results of the stochastic model and
the reference ones in terms of statistical quantities and of the distribution of crack lengths are illustrated in
Fig. 19. The numerical results illustrate that the stochastic model can predict the nominate properties of
the crack length distribution.

Computational effectiveness. The stochastic model-based method is more computationally efficient than the
direct MCS method. It is due to the facts that: (i) the number of contact forces needed to be evaluated
to build the stochastic model, m = 5000, is much smaller than the one required for direct MCS, e.g.
NMC × Np = 200000 for NMC = 1000 beam samples and Np = 200 sub-contact domains; and, (ii) the
coefficients of the gPCE model, Eq. (33), are efficiently evaluated using quadrature rules, see AppendixC.
To identify the gPCE model coefficients from m samples data, the computational time for one processor is
7 minutes. To evaluate the stiction failure configuration of one beam sample, a direct MCS method takes
several hours (∼ 16 hours) on one processor which mainly devotes for evaluating the Np = 200 apparent
adhesive contact forces. In case of the stochastic model-based method, the constructed stochastic model
is used to generate the apparent adhesive contact forces, therefore the computational time to obtain the
stiction failure of one beam sample devotes only for running the FE model of the beam, and significantly
reduces to 2-5 minutes in the same computing condition. For this case, by applying the developed stochastic
model-based multiscale method, the overall computational time is reduced by 96% in comparison with direct
MCS multiscale method.

5. Comparison with experimental data

The stochastic model-based multiscale method, implemented in Section 4, is applied to evaluate the
stiction phenomenon of cantilever beams at different relative humidity levels. In order to quantify the
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Figure 19: The comparison between the two uncertainty propagation methods: stochastic model using gPCE and the direct
MCS method as reference in terms of the distribution of crack lengths. (a) The convergence of the mean of crack length. (b)
The convergence of the standard derivation (STD) of crack length. (c) The distribution of crack length.

Table 3: The comparison between the experimental data and the numerical results [5] in terms of average of crack length.

Relative humidity RH [%] 0 30 45 55 65 70 85 90 95

“Average” experimental crack lengths [µm] 923 923 923 923 923 355 200 146 112
Average numerical crack lengths [µm] 1266 1220 1151 983 749 620 219 150 111

stiction phenomenon de Boer et al. [59] have derived the apparent effective energy Γ (in J/m
2
) obtained

from the crack lengths, ls, as

Γ =
3

2
E
h2t3

l4s
, (36)

where E is the Young’s modulus. Using the developed stochastic model-based multiscale method, the crack
lengths are evaluated and the corresponding apparent effective energies are obtained by Eq. (36).

Two experiments sets are considered, the first one developed by DelRio et al. in [5], and second one
by E. Soylemez et al. in [9]. In both experimental measurements, the crack lengths of MEMS cantilever
beams were measured for different humidity levels. One important input data of the developed method is
the PSD function estimated from the measurements of the contacting surfaces. As we do not have access to

Table 4: The comparison between the experimental data and the numerical results [9] in terms of average of crack length.

Relative humidity RH [%] 0 35 55 65 70 80 90

“Average” experimental crack lengths [µm] 762 660 402 384 320 236 190
Average numerical crack lengths [µm] 1293 1060 630 384 293 178 113
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Figure 20: Comparison between the contributions of vdW forces and capillary forces to the distribution of apparent effective
energies Γ for the first set of experiments [9].
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Figure 21: The comparisons with the experimental data, reported in [5] (a) and in [9] (b), of the respective numerical results
evaluated using the stochastic model-based multiscale method.
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the topology measurements, we construct the PSD functions from the information provided by the authors.
The constructed PSD of the first set of experiments [5] has been already discussed in Section 4.1. For the
second set of experiments, the assumption of self-affine surfaces is still applied, and the PSD is formulated
as Eq. (34). However, the parameters are changed as reported in 3rd column of Tab. 2 to adapt with
the information provided in paper [9], which is also reported in Tab. 2 by the “∗” marked quantities. The
contructed PSD function of the second set of experiments is illustrated in Fig. 11(b).

In both cases, the numerical results take the vdW and capillary interactions into account for RH < 55%,
and neglect the vdW effect for higher humidity levels RH ≥ 55%. As illustrated in Fig. 20, the capillary
contribution to the adhesive behavior is dominant as compared to the vdW one for RH ≥ 55%.

The comparisons are illustrated in Fig. 21 in terms of apparent effective energies Γ, and in Tabs. 3, 4
in terms of the means of crack lengths. We remark that the reported “average” experimental crack lengths
are deduced from the average experimental apparent energies, extrapolated from their graphical illustration
reported in [5, 9], using Eq. (36). Because the experiments were conducted using a small number of cantilever
beams, while the numerical results are obtained from NMC =1000 realizations, we draw the conclusion on
the validation of stochastic model-based multiscale method with caution. Even though the PSD functions are
constructed from limited information, the numerical results capture the main characteristics of the stiction
phenomenon, i.e. the evolution of adhesive energies and their uncertainties in terms of humidity levels. The
comparison is discussed in detail in the following.

(i) At high humidity levels, RH ≥ 55%, the numerical results predict with accuracy the first set of
experimental results [5], see Fig. 21(a) and Tab. 3. For the second set of experiments [9], the
difference between the numerical and the experimental data at high humidity levels is not significant
in comparison with the cantilever beam lengths (2000-1050 µm), e.g. that difference is 58 µm at
RH = 80% corresponding to 2.9-5.5% of the cantilever beam lengths, see Tab. 4. Besides the
problem of the indirect construction the PSD functions from incomplete information, these differences
might also be explained by the fact that the reported experimental tests did not follow the similar
loading-unloading process as in the numerical implementation of this work. Thus the pull-in/ pull-out
interactions, see Fig. 12(a,b,c), cannot be observed completely during the test, and the experimental
results do not necessarily conduct to the minimum crack lengths.

(ii) At low humidity levels, RH < 55%, there exist discrepencies between the numerical predictions and the
experimental data, see Fig. 21. It can result from the assumption of Gaussian distribution of the surface
heights. As discussed in [13, 61], the Gaussian distribution assumption strongly affects the prediction
of the numerical results, especially at low humidity levels when the ranges of vdW and capillary
interactions are small in comparison with the surface roughness. Because of that assumption, the
numerical results underestimated the adhesive energies [13, 61], as it is also observed here in Fig. 21 and
Tabs. 3, 4. Therefore, by improving the surface generator, the gap between numerical predictions and
experimental data for low humidity levels might be reduced. In terms of implementation, the developed
stochastic model-based multiscale method can directly adopt that improvement by considering other
surface generators, e.g. a non-Gaussian one [62].

To improve the numerical results the following aspects should be accounted for.

(i) Estimate the PSD directly from AFM measurements of contacting surfaces.

(ii) Consider to replace the assumption of Gaussian distribution of surface heights, by a proper one corre-
sponding to the measurements, i.e. applying Pearson distributions to account not only for the mean
and the variance but also for the skewness and the kurtorsis.

(iii) Account for the other physical aspects, the absorbed surface layers [47], and other sources of uncer-
tainties such as the distribution of contaminant particles on the surfaces [63, 64], when evaluating the
apparent contact forces.
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6. Conclusions

For the considered physical problems of MEMS stiction, because the roughness of the contacting surfaces
is comparable with the adhesive force ranges, and the length scale separation between the surface roughness
and the apparent contact area is not fully satisfied, the computational multiscale method process should
consider the uncertainties. In this work, we have developed a stochastic multiscale method that takes the
roughness of the contacting surfaces into account in order to predict the probabilistic behaviors of micro
structures involving adhesive contacts. The proposed method uses the random meso-scale apparent adhesive
contact force as a scale bridge between the rough surfaces contact behaviors and the involved structural
behaviors. The random apparent adhesive contact forces are integrated into a FE model of the studied
structures to evaluate the structural behaviors in a probabilistic way.

To this end, the stochastic model-based multiscale methodology is proposed to avoid the explicitly
evaluation of a huge number of apparent contact forces required by a direct MCS. In this method, the
construction of the stochastic model (using gPCE) of the random apparent contact forces is the trading
additional cost and is tailored in the present work. To construct the stochastic model, the random apparent
contact force evolution (force vs. distance curve) is parametrized by the random vector of parameters
on which a linear dimension reduction is performed to lessen the effect of the curse of dimensionality. A
gPCE model is thus constructed to represent the reduced dimension random vector. The coefficients of
the gPCE are identified efficiently using isoprobabilistic transformations constructed based on Rosenblatt
transformation. Therefore, the proposed method is performed with an acceptable computational cost.

The methodology is validated through a comparison with the experimental data of the micro cantilever
beam stiction. Even though the PSD functions are constructed indirectly from limited data, the numerical
results well predict the trends of the adhesive energies and their uncertainty ranges. However, there are
differences between numerical and experimental results at low humidity levels. These differences can be
reduced by replacing the assumption of Gaussian distribution of the surface heights by the proper ones,
e.g. Pearson distributions. In terms of implementation, the developed stochastic-model based multiscale
method can fully adopt that improvement of surface heights distribution. Indeed, only the generator of the
contacting surfaces needs to be changed. In addition, other physical effects such as the absorbed surface
layer and other sources of uncertainties such as the distribution of contaminant particles on the surfaces
should be investigated and accounted for.
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AppendixA. The generator of rough surfaces using PSD function

By assuming that the rough surface is a stationary and Gaussian random field, for a chosen value of the
maximum wave number µ, the normal height Z(µ)(θ) corresponding to the realization surface S(θ) can be
generated using the PSD function sZ following the works of Shinozuka [44] and Poiron and Soize [45], with

z(µ)(x, θ) =√
2∆ζ2 Re

{
µ∑

l1=1

µ∑
l2=1

β(l1,l2)(θ)

√
1

(2π)2
sZ(ζl1 , ζl2) exp

(
ix1ζl1 + ix2ζl2 + iφ(l1,l2)(θ)

)}
,

(A.1)

where

• the values {(ζl1 , ζl2), 1 ≤ l1, l2 ≤ µ} are samplings of the wave number domain such that {(ζl1 , ζl2) =
(−ζL + (l1 − 1)∆ζ,−ζL + (l2 − 1)∆ζ), 1 ≤ l1, l2 ≤ µ}, with ∆ζ = 2ζL/µ;
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Figure B.22: The convergence with respect to m when approximating the PDF of η1 using the kernel density estimation.

• the values {φ(l1,l2)(θ), 1 ≤ l1, l2 ≤ µ} are µ×µ independent realizations of a uniform random variable
with values in [0, 2π]; and

• the values {β(l1,l2)(θ), 1 ≤ l1, l2 ≤ µ} are such that β(l1,l2)(θ) = −
√
− log(ψ(l1,l2)(θ)), where {ψ(l1,l2)(θ), 1 ≤

l1, l2 ≤ µ} are µ× µ independent realizations of a uniform random variable with values in ]0, 1].

The implementations of Eqs. (9) and (A.1) are costly in terms of computational resources due to the double
integration/ sum operations. To reduce the computational time, we can apply the fast Fourier transform
(FFT) scheme developed for the rough surface cases as in [14].

AppendixB. Multivariate kernel density estimation

AppendixB.1. Theory

From the m explicitly evaluated vectors {q(1), ...,q(m)}, m full dimension vector samples {η(1), ...,η(m)}
and their corresponding reduced dimension vector samples {η̃(1), ..., η̃(m)} are evaluated using Eqs. (29,

30). Using m samples {η̃(1), ..., η̃(m)}, the probability density function pH̃ of the random vector H̃ can be
approximated by p̂H̃ evaluated using the multivariate kernel density estimation method [66] as

pH̃(η̃) ≈ p̂H̃(η̃) =
1

m

m∑
k=1

K[B]

(
η̃ − η̃(k)

)
, (B.1)

where K is the kernel function and [B] is the bandwidth matrix. For a convenient choice, the kernel function
can be chosen as the multivariate normal distribution function N (0, [B]) with the covariance matrix [B].
In this case, one can use the thumb-up rule proposed by Scott [66] for which the bandwidth matrix [B] is a
diagonal matrix given by

[B] = m

−2

Ng + 4 [CH̃] = m

−2

Ng + 4 INg , (B.2)

where [CH̃] = INg , and Ng is the dimension of the vector η̃. With this choice of the kernel function, Eq. (B.1)
is rewritten as

pH̃(η̃) ≈ p̂H̃(η̃) =
1

m

m∑
k=1

1

(2π)Ng/2m−Ng/(Ng+4)
exp
(
− 1

2
× ‖η̃ − η̃(k)‖
m−2/(Ng+4)

)
. (B.3)

It can be proved that p̂H̃(η̃)
m→+∞−−−−−→ pH̃ [66].
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AppendixB.2. Convergence of problem stated in Section 4

The number m of the explicitly evaluated samples, {η̃(1), . . . , η̃(m)}, is important when accomplishing
the distribution approximation pH̃ ≈ p̂H̃ stated in Eq. (B.3). As it is observed in Fig. B.22, the convergence
is achieved when approximating the 1D probabilistic density function of η1 with m = 5000. Therefore, it is
reasonable to chose m = 5000.

AppendixC. Construction of the stochastic model using gPCE representation

AppendixC.1. Theory

A stochastic model is constructed in order to generate the realizations of the random vector H̃ using its
m explicitly evaluated samples {η̃(1), ..., η̃(m)}, obtained using Eqs. (29, 30), as input data. The stochastic
model is required to satisfy two conditions:

(i) The distribution of the generated realizations of the random vectors H̃ using the stochastic model is
an approximation of the one estimated from the explicitly evaluated samples, Eq. (B.3); and

(ii) As the purpose of developing this stochastic model is to reduce the computational cost, the stochastic
model must generate the random realizations with negligible computational cost, and the construction
of that stochastic model must be computationally efficient.

To respect the first condition (i), in this paper the stochastic model is constructed based on the Rosenblatt
transformation [39], notated here T, which is an isoprobabilistic transformation from the objective Ng-

dimensional random vector H̃ to the Ng-dimensional random vector Ξ uniformly distributed on the unit

hypercube [0, 1]Ng , Ξ = T(H̃). To achieve the second condition (ii), because the Rosenblatt transformation,
discussed in the following, requires a non-trivial computational effort to be evaluated, it is approximated by a
gPCE model which contains only polynomial functions that can be evaluated with a negligible computational
cost. In addition, the gPCE model is constructed in a computationally efficient way using the projection
method [58].

Rosenblatt transformation. The Rosenblatt transformation [39] Ξ = T(H̃) is detailed component by com-
ponent by

ξ1 = CH̃(η1)

ξ2 = CH̃(η2|η1)

...

ξNg = CH̃(ηNg |ηNg−1, . . . , η1),

(C.1)

where (CH̃(ηi|ηi−1, . . . , η1)) CH̃(ηi) are the (conditional) cumulative distribution functions of the random
variable Hi evaluated at ηi and which are defined as

CH̃(ηi|ηi−1, . . . , η1) =

∫ ηi

−∞
pH̃(x|ηi−1, . . . , η1)dx, with i = 1, . . . , Ng , (C.2)

with (pH̃(ηi|ηi−1, . . . , η1)) pH̃(ηi) the (conditional) distribution functions of the random variable Hi eval-
uated at ηi and which are estimated using Eq. (B.3). Because of the strictly monotonic property of the
cumulative distribution functions, the inverse of Rosenblatt transformation,

H̃ = T−1(Ξ), (C.3)

exists and is detailed component by component as

η1 = C−1

H̃
(ξ1)

η2 = C−1

H̃

(
ξ2|η1

)
...

ηNg = C−1

H̃

(
ξNg |ηNg−1, . . . , η1

)
.

(C.4)
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The inverse Rosenblatt transformation described in Eq. (C.3) fulfills the condition of approximating dis-

tribution between generated and explicitly evaluated samples of random vector H̃. With this transformation,
one can generate samples of a uniform distribution random vector Ξ, and the corresponding realizations of
the random vector H̃ can be evaluated. However, to evaluate the inverse Rosenblatt transformation, it re-
quires a non-trivial computational effort devoted to the evaluation of the cumulative distribution functions,
Eq. (C.2). To achieve the goal of negligible computational cost when evaluating the stochastic model, the
inverse Rosenblatt transformation is approximated using gPCE model formulated in terms of polynomial
functions.

Approximation of the inverse Rosenblatt transformation using gPCE. The inverse Rosenblatt transformation
in Eq. (C.3) is approximated using a truncated gPCE [34, 35, 67] as

H̃ = T−1(Ξ)︸ ︷︷ ︸
Rosenblatt transformation

≈ H̃PC =

N∑
α=1

cαΨα(Ξ)︸ ︷︷ ︸
Nd-order gPCE

, (C.5)

where c1, . . . , cN are vectors of coefficients in RNg , and where Ψ1(Ξ), . . . ,ΨN (Ξ) are the renumbered or-
thogonal Legendre polynomials, shifted to agree with the domain of random vector Ξ, [0, 1]Ng , and whose
orders are less than or equal to Nd with Nd the order of the truncated gPCE. The number of polynomials
of this expansion is N = (Nd +Ng)!/Ng!Nd!. The chaos polynomials Ψα(Ξ) are pΞ-orthonormal, i.e.,∫

[0,1]Ng
Ψα(ξ)Ψβ(ξ)pΞ(ξ)dξ = δαβ , (C.6)

where pΞ = 1 is the probabilistic density function of random vector Ξ, and δαβ is the Kronecker symbol.
Thanks to the pΞ-orthonormal property of the polynomial chaos system stated in Eq. (C.6), the coefficients
cα can be evaluated by projecting Eq. (C.5) on the polynomial chaos system [58]

cα =

∫
[0,1]Ng

T−1(ξ)Ψα(ξ)dξ. (C.7)

Remarks on the implementation: In terms of numerical implementation, the integration in Eq. (C.7) is
efficiently evaluated using quadrature rules [68], e.g. using the Gauss quadrature rule with (Nd + 1)Ng

integral points as

cα ≈
(Nd+1)Ng∑

i=1

T̂−1(ξG
i )Ψα(ξG

i )wi, with

(Nd+1)Ng∑
i=1

wi = 1, (C.8)

where T̂−1 is the approximation of inverse Rosenblatt transformation T−1 for which the probability density
function and cumulative distribution functions are evaluated using multivariate kernel density estimation,
Eq. (B.1), and {ξG

1 , . . . , ξ
G
(Nd+1)Ng

} are the (Nd + 1)Ng integral points defined on the hypercube [0, 1]Ng and

associated with the weights {w1, . . . , w(Nd+1)Ng }. In addition, the linear interpolation technique can be used
to perform the inverse operation in Eq. (C.8) [58].

Error estimation. In order to quantify the convergence of the gPCE model in terms of the order of the
polynomials chaos representation Nd, the mean integral square errors are considered,

relMISEPC
i (Nd) =

∫
[0,1]Ng

(
T̂−1
i (ξ)−

∑N
α=1 cαiΨα(ξ)

)2
dξ∫

[0,1]

(
T̂−1
i (ξ)

)2
dξ

, with i = 1..Ng; (C.9)

relMISEPC(Nd) =

∫
[0,1]Ng

∥∥T̂−1(ξ)−
∑N
α=1 cαΨα(ξ)

∥∥2
dξ∫

[0,1]Ng

∥∥T̂−1(ξ)
∥∥2

dξ
. (C.10)

These errors relMISEPC
i and relMISEPC are also evaluated using the Gauss quadrature rule.
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Figure C.23: The convergence analysis of gPCE model order Nd. (a) The mean square integral error defined in Eqs. (C.9-C.10).
(b-c) The comparisons between the Rosenblatt transformation and the gPCE model.

AppendixC.2. Coefficients identification and convergence analysis of gPCE model stated in Section 4

With the input of m = 5000 reduced dimension (Ng = 3) vectors {η̃(1), . . . , η̃(m)}, one can access to the
approximations of the probability density function, (conditional) cumulative functions, and (inverse) Rosen-
blatt transformation using the multivariate kernel density estimation method, see AppendixB. The choice of
m = 5000 results from the convergence analysis reported in AppendixB.2. To identify the coefficients of the
gPCE model, see Eq (33) for the compact form and Eq (C.5) for the detailed form, the inverse Rosenblatt
transformation is projected on the polynomial chaos system, Eq. (C.7). The integrations in Eq. (C.7) are
efficiently achieved using Gauss quadrature rule with (Nd + 1)Ng integral points, Eq. (C.8) .

To study the convergence of the gPCE model in terms of the truncated order of gPCE model Nd, one can
consider two aspects: (i) the mean square integral errors defined in Eqs. (C.9-C.10), see Fig. C.23(a); (ii) the
comparison of gPCE model and Rosenblatt transformation, Eq. (C.5), see Figs. C.23(b,c) for {T−1

1 ,T−1
2 }. As

it can be observed from Figs. C.23, the constructed 12-order gPCE model can approximate the randomness
of the reduced dimension random vector H̃ with relMISEPC(Nd = 12) = 5 %.
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