Abomohra Abd El-Fatah, El-Sheekh M. & Hanelt D., 2014. Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass Bioenergy, 64, 237-244
Arad S. & Richmond A., 2004. Industrial production of microalgal cell-mass and secondary products-species of high potential: Porphyridium sp. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 289-297.
Barbarino E. & Lourenço S.O., 2005. An evaluation of methods for extraction and quantification of protein from marine macro-and microalgae. J. Appl. Phycol., 17, 447-460.
Becker E.W., 1994. Microalgae: biotechnology and microbiology. Cambridge, UK: Cambridge University Press.
Becker E.W., 2004. Microalgae in human and animal nutrition. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 312-351.
Becker E.W., 2007. Micro-algae as a source of protein. Biotechnol. Adv., 25, 207-210.
Ben-Amotz A., 2004. Industrial production of microalgal cell-mass and secondary products. Major industrial species: Dunaliella. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 273-280.
Bhat V.B. & Madyastha K.M., 2001. Scavenging of peroxynitrite by phycocyanin and phycocyanobilin from Spirulina platensis: protection against oxidative damage to DNA. Biochem. Biophys. Res. Commun., 285, 262-266.
Brown M.R., 1991. The amino-acid and sugar composition of 16 species of microalgae used in mariculutre. J. Exp. Mar. Biol. Ecol., 145, 79-99.
Carmichael W.W., Drapeau C. & Anserson D.M., 2000. Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (cyanobacteria) from Klamath lake for human dietary use. J. Appl. Phycol., 12, 585-595.
Chen F. & Zhang Y., 1997. High cell density mixotrophic culture of Spirulina platensis on glucose for phycocyanin production using a fed-batch system. Enzyme Microb. Technol., 20, 221-224.
Chen X.-J. et al., 2015. Dunaliella salina Hsp90 is halotolerant. Int. J. Biol. Macromol., 75, 418-425.
Christaki E., Florou-Paneri P. & Bonos E., 2011. Microalgae: a novel ingredient in nutrition. Int. J. Food Sci. Nutr., 62(8), 794-799.
Christaki E. et al., 2012. Effect of dietary Spirulina platensis on milk fatty acid profile of dairy cows. Asian J. Anim. Vet. Adv., 7, 597-604.
Chronakis I.S., Galatanu A.N., Nylander T. & Lindman B., 2000. The behaviour of protein preparations from blue-green algae (Spirulina platensis strain Pacifica) at the air/water interface. Colloids Surf., A, 173, 181-192.
Clares M.E., Moreno J., Guerrero M.G. & García-González M., 2014. Assessment of the CO2 fixation capacity of Anabaena sp. ATCC 33047 outdoor cultures in vertical flat-panel reactors. J. Biotechnol., 187, 51-55.
Cui Z., 1983. Culture trial of Facai in soil-soaked solution. Sci. Technol. Lett. Inner Mongolia, 4, 10-38.
Dangeard P., 1940. Sur une algue bleue alimentaire pour l’homme: Arthrospira platensis (Nordst.) Gomont. Actes Soc. Linn. Bordeaux Extr. P.V., 91, 39-41.
Danxiang H., Yonghong B. & Zhengyu H., 2004. Industrial production of microalgal cell-mass and secondary products-major industrial species: Nostoc. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 304-331.
Fon Sing S., Isdepsky A., Borowitzka M.A. & Lewis D.M., 2014. Pilot-scale continuous recycling of growth medium for the mass culture of a halotolerant Tetraselmis sp. in raceway ponds under increasing salinity: a novel protocol for commercial microalgal biomass production. Bioresour. Technol., 161, 47-54.
González López C.V. et al., 2009. Utilization of the cyanobacteria Anabaena sp. ATCC 33047 in CO2 removal processes. Bioresour. Technol., 100, 5904-5910.
González López C.V. et al., 2010. Protein measurements of microalgal and cyanobacterial biomass. Bioresour. Technol., 101, 7587-7591.
Gonzàlez R. et al., 1999. Anti-inflammatory activity of phycocyanin extract in acetic acid-induced colitis in rats. Pharmacol. Res., 39(1), 55-59.
Gouveia L. et al., 2008. Microalgae in novel food products. In: Papadopoulos K.N., ed. Food chemistry research developments. Hauppauge, NY, USA: Nova Science Publishers, Inc, 37.
Hu Q., 2004. Industrial production of microalgal cell-mass and secondary products major industrial species: Arthrospira (Spirulina) platensis. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 265-272.
Iqbal M., Zafar S.I., Stepan-Sarkissian G. & Fowler M.W., 1993. Indoor mass cultivation of red alga Porphyridium cruentum in different types of bioreactors: effect of scale-up and vessel shape. J. Ferment. Bioeng., 75(3), 76-78.
Iwamoto H., 2004. Industrial production of microalgal cell-mass and secondary products-major industrial species: Chlorella. In: Richmond A. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell, 255-263.
Kent M., Welladsen M.H., Mangott A. & Li Y., 2015. Nutritional evaluation of Australian microalgae as potential human health supplements. PLoS One, 10(2), e0118985.
Landrum J.T., Bone R.A. & Kilburn M.D., 1997. The macular pigment: a possible role in protection from age-related macular degeneration. Adv. Pharmacol., 38, 537-556.
Lee Y.-K., 1997. Commercial production of microalgae in the Asia-Pacific rim. J. Appl. Phycol., 9, 403-411.
Madhava Reddy C. et al., 2003. C-Phycocyanin, a selective cyclooxygenase-2 inhibitor, induces apoptosis in lipopolysaccharide-stimulated RAW 264.7 macrophages. Biochem. Biophys. Res. Commun., 304(2), 385-392.
Mahajan A. & Ahluwalia A.S., 2010. Effect of processing on functional properties of Spirulina protein preparations. Afr. J. Microbiol. Res., 4(1), 55-60.
Margulis L., 1981. Symbiosis in cell evolution. New York, NY, USA: W.H. Freeman.
Paoletti C., Vincenzini M., Bocci F. & Materassi R., 1980. Composizione biochimica generale delle biomasse di Spirulina platensis e S. Maxima. In: Materassi R., ed. Prospettive della coltura di Spirulina in Italia. Roma: Consiglio Nazionale delle Ricerche, 111-125.
Patel A.K. et al., 2013. Separation and fractionation of exopolysaccharides from Porphyridium cruentum. Bioresour. Technol., 145, 345-350.
Pawlik-Skowronska B., Kalinowska R. & Skowronski T., 2013. Cyanotoxin diversity and food web bioaccumulation in a reservoir with decreasing phosphorus concentrations and perennial cyanobacterial blooms. Harmful Algae, 28, 118-125.
Praveenkumar R. et al., 2014. Improved biomass and lipid production in a mixotrophic culture of Chlorella sp. KR-1 with addition of coal-fired flue-gas. Bioresour. Technol., 171, 500-505.
Richmond A., 2004. Handbook of microalgal culture. Biotechnology and applied phycology. Oxford, UK: Blackwell.
Romay Ch. et al., 1998. Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Res., 47, 36-41.
Romay Ch. et al., 2003. Phycocyanin: a biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Curr. Protein Pept. Sci., 4, 207-216.
Romero García J.M., Acién Fernández F.G. & Fernández Sevilla J.M., 2012. Development of a process for the production of L-amino acids concentrates from microalgae by enzymatic hydrolysis. Bioresour. Technol., 112, 164-170.
Saker M.L. et al., 2005. Detection of microcystin synthetase genes in health food supplements containing the freshwater cyanobacterium Aphanizomenon flos-aquae. Toxicon, 46(5), 555-562.
Schwenzfeier A., Helbig A., Wierenga P.A. & Gruppen H., 2011. Isolation and characterization of soluble protein from the green microalgae Tetraselmis sp. Bioresour. Technol., 102(19), 9121-9127.
Schwenzfeier A., Wierenga P.A. & Gruppen H., 2013. Emulsion properties of algae soluble protein isolate from Tetraselmis sp. Food Hydrocolloids, 30(1), 258-263.
Servaites J.C., Faet J.L. & Sidhu S.S., 2012. A dye binding method for measurement of total protein in microalgae. Anal. Chem., 421, 75-80.
Simpore J. et al., 2006. Nutrition rehabilitation of undernourished children utilizing Spiruline and Misola. Nutr. J., 5(3), doi:10.1186/1475-2891-5-3
Slocombe S.P. et al., 2013. A rapid and general method for measurement of protein in microalgal biomass. Bioresour. Technol., 129, 51-57.
Tavallaie S. et al., 2015. Comparative studies of β-carotene and protein production from Dunaliella salina isolated from Lake Hoze-soltan, Iran. J. Aquat. Food Prod. Technol., 24, 79-90.
Temme E.H.M., Zhang J., Schouten E.G. & Kesteloot H., 2001. Serum bilirubin and 10-year mortality risk in a Belgian population. Cancer Causes Control, 12, 887-894.
Tibbetts S.M., Milley J.E. & Lall S.P., 2015. Chemical composition and nutritional properties of freshwater and marine microalgal biomass cultured in photobioreactors. J. Appl. Phycol., 27, 1109-1119.
Velea S., Ilie L. & Filipescu L., 2011. Optimization of Porphyridium purpureum culture growth using two variables experimental design: light and sodium bicarbonate. U.P.B. Sci. Bull. Ser. B, 73(4), 81-94.
Vonshak A., Cohen Z. & Richmond A., 1985. The feasibility of mass cultivation of Porphyridium. Biomass, 8, 13-25.
Xia L. et al., 2014. Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China. Bioresour. Technol., 174, 274-280
Yamani E. et al., 2009. Intérêt de la spiruline chez les personnes vivant avec le VIH à Bangui (RCA). Med. Trop., 69(1), 66-70.
Yao C.-H., Ai J.-N., Cao X.-P. & Xue S., 2013. Salinity manipulation as an effective method for enhanced starch production in the marine microalga Tetraselmis subcordiformis. Bioresour. Technol., 146, 663-671.