Article (Scientific journals)
Forecasting travel behavior using Markov Chains-based approaches
Saadi, Ismaïl; El Saeid Mustafa, Ahmed Mohamed; Teller, Jacques et al.
2016In Transportation Research. Part C, Emerging Technologies, 69, p. 402-417
Peer Reviewed verified by ORBi
 

Files


Full Text
39Z1T692_manuscript_SAADI_edited.pdf
Author preprint (446.49 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Travel behavior analysis; Travel demand modeling; Activity sequences; Daily activity-travel patterns; Simulation-based population synthesis; Profiling analysis
Abstract :
[en] Recent advances in agent-based micro-simulation modeling have further highlighted the importance of a thorough full synthetic population procedure for guaranteeing the correct characterization of real-world populations and underlying travel demands. In this regard, we propose an integrated approach including Markov Chain Monte Carlo (MCMC) simulation and profiling-based methods to capture the behavioral complexity and the great heterogeneity of agents of the true population through representative micro-samples. The population synthesis method is capable of building the joint distribution of a given population with its corresponding marginal distributions using either full or partial conditional probabilities or both of them simultaneously. In particular, the estimation of socio-demographic or transport-related variables and the characterization of daily activity-travel patterns are included within the framework. The fully probabilistic structure based on Markov Chains characterizing this framework makes it innovative compared to standard activity-based models. Moreover, data stemming from the 2010 Belgian Household Daily Travel Survey (BELDAM) are used to calibrate the modeling framework. We illustrate that this framework effectively captures the behavioral heterogeneity of travelers. Furthermore, we demonstrate that the proposed framework is adequately adapted to meeting the demand for large-scale micro-simulation scenarios of transportation and urban systems.
Research Center/Unit :
LEMA - Local Environment Management & Analysis
Lepur : Centre de Recherche sur la Ville, le Territoire et le Milieu rural - ULiège
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Saadi, Ismaïl ;  Université de Liège > Département ArGEnCo > Transports et mobilité
El Saeid Mustafa, Ahmed Mohamed ;  Université de Liège > Département ArGEnCo > LEMA (Local environment management and analysis)
Teller, Jacques  ;  Université de Liège > Département ArGEnCo > Urbanisme et aménagement du territoire
Cools, Mario  ;  Université de Liège > Département ArGEnCo > Transports et mobilité
Language :
English
Title :
Forecasting travel behavior using Markov Chains-based approaches
Publication date :
August 2016
Journal title :
Transportation Research. Part C, Emerging Technologies
ISSN :
0968-090X
eISSN :
1879-2359
Publisher :
Pergamon Press
Volume :
69
Pages :
402-417
Peer reviewed :
Peer Reviewed verified by ORBi
Name of the research project :
Floodland
Funders :
ARC grant for Concerted Research Actions, financed by the Wallonia-Brussels Federation
Available on ORBi :
since 10 August 2016

Statistics


Number of views
143 (26 by ULiège)
Number of downloads
442 (23 by ULiège)

Scopus citations®
 
34
Scopus citations®
without self-citations
29
OpenCitations
 
20
OpenAlex citations
 
34

Bibliography


Similar publications



Contact ORBi