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Abstract6

Recent advances in agent-based micro-simulation modeling have further highlighted the importance of a
thorough full synthetic population procedure for guaranteeing the correct characterization of real-world
populations and underlying travel demands. In this regard, we propose an integrated approach including
Markov Chain Monte Carlo (MCMC) simulation and profiling-based methods to capture the behavioral
complexity and the great heterogeneity of agents of the true population through representative micro-
samples. The population synthesis method is capable of building the joint distribution of a given popu-
lation with its corresponding marginal distributions using either full or partial conditional probabilities or
both of them simultaneously. In particular, the estimation of socio-demographic or transport-related vari-
ables and the characterization of daily activity-travel patterns are included within the framework. The fully
probabilistic structure based on Markov Chains characterizing this framework makes it innovative com-
pared to standard activity-based models. Moreover, data stemming from the 2010 Belgian Household Daily
Travel Survey (BELDAM) are used to calibrate the modeling framework. We illustrate that this framework
effectively captures the behavioral heterogeneity of travelers. Furthermore, we demonstrate that the pro-
posed framework is adequately adapted to meeting the demand for large-scale micro-simulation scenarios
of transportation and urban systems.
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1. Background9

Activity-based analyses of travel behavior within large-scale micro-simulation models are particularly10

adapted to understanding the dynamics and the transitional patterns of travel behavior. In this context, most11

activity-based models require a full (synthetic) population to obtain greater behavioral realism within such12

complex transport and urban systems. However, the lack of highly disaggregate data suggests the use of13

more efficient methods for synthesizing individual/household socio-demographic attributes as well as their14

daily activity information (Beckman et al., 1996). Obtaining accurate individual-level information for a15

large population is a great challenge especially in the context of restrictive data availability. Typically, such16

detailed data can be derived from national censuses. However, in practice, only aggregate information is17

available to researchers and practitioners (Anderson et al., 2014).18
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Furthermore, micro-samples may also include incomplete observations, making the true population19

identification process through a virtual process more complex. To overcome this problem, several tech-20

niques have been developed to address multiple data sources and incomplete datasets. Generally, detailed21

individual-level micro-data and aggregate large-scale datasets are the two components used as input for22

population synthesizing purposes. In the literature, the classical techniques identified are Iterative Propor-23

tional Fitting (IPF) (Beckman et al., 1996; Mohammadian et al., 2010), Iterative Proportional Updating24

(IPU) (Ye et al., 2009), Combinatorial Optimization (CO) (Williamson et al., 1998; Voas and Williamson,25

2000) and probabilistic models (Farooq et al., 2013; Sun and Erath, 2015; Saadi et al., 2016b).26

In this paper, we opt for a simulation-based approach because of its ability to address incomplete27

datasets using partial conditional distributions (Farooq et al., 2013). More specifically, this operational28

approach based on a Gibbs sampler can generate agents using partial views of the true joint distribution as29

if the synthesized agents were drawn from the real population. In this context, the method enables the gen-30

eration of populations of any given size. A comparative study established by Farooq et al. (2013) between31

IPF and simulation-based approaches revealed that the latest technique clearly outperforms IPF using, for32

both methods, almost the same amount of data. We build a representation of the true population by im-33

plicitly merging different information provided by multiple micro-data sources using the simulation-based34

approach. Then, from this representative/synthesized population, we can group the population into ho-35

mogeny clusters characterized by similar attributes to understand their related travel behavior and to enable36

a comparative attribute-based study based on the activity sequences.37

For several decades, characterizing people’s activity-travel behavior has been an important issue to re-38

searchers (Pendyala and Goulias, 2002; Auld et al., 2015; Saadi et al., 2016a). To include the sequential39

dependencies of daily activities, some studies have suggested the use of Sequence Alignment Methods40

(SAMs) (Joh and Timmermans, 2011; Joh et al., 2002; Wilson, 1998), whose inputs representing the daily41

activity behavior in the form of activity sequences are extracted from activity-travel diaries (Bhat and Singh,42

2000; Spissu et al., 2009). Typically, the application of SAMs includes pairwise sequence alignment algo-43

rithms for scoring and comparing activity sequences in-between them. In this way, the main activity patterns44

can be identified quantitatively and qualitatively within their respective subset of activity chains (Joh et al.,45

2006).46

When a relationship can be established between the derived patterns and the variables of interest, general47

activity-travel behavior trends can be analyzed to investigate more deeply the determinants influencing those48

travel patterns (Wilson, 1998). Although SAMs have been extensively used for characterizing activity-49

travel patterns, such methods clearly suffer from serious limitations. Indeed, SAMs are unable to identify50

the complete nature of a cluster. Even if the information regarding the frequent activity patterns is extracted,51

irregular activities are not considered; thus, only parts of the clusters are characterized (Liu et al., 2015). In52

this context, a number of questions have been raised regarding the consistency of such sequence alignment53

techniques.54

In an attempt to obtain improvements, Liu et al. (2015) proposed a profiling method called profile Hid-55

den Markov Models (pHMMs) for characterizing the complete set of activity sequences including irregular56

activities. pHMMs belong to the family of sequence profile methods that are essentially used to charac-57

terize protein sequences. Furthermore, pHMMs may be described as position-specific scoring parameters58

emanating from a multiple alignment of a group of protein sequences (Durbin et al., 1998).59

From a methodological point of view, the positions of alignment are categorized according to three60

possible states: match, insertion and deletion. Fundamentally, the configuration of the model is a successive61

layout of match states representing the conserved activities that have been identified within their respective62

cluster. This successive layout forms the reference activity sequences or a base template characterized by63

the most frequent activities. In parallel, insertion states model the introduction of new conserved residues,64

which can be interpreted as additional activities incorporated into the previously defined base template.65
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Conversely, deletion states represent the omission of particular conserved activities from the base template.66

In this regard, random differences between the activity sequences within the overall characterization process67

are implicitly included throughout these two states. Subsequently, estimated pHMMs can generate new68

activity sequences so that the relationships with their corresponding cluster are preserved (Liu et al., 2015).69

Furthermore, pHMMs can be considered as quantitative descriptors that assign weights - probabilities70

of occurrence - to each activity at each corresponding match state characterizing both regular and irregular71

activities. For instance, considering daily activity-travel sequences, some travelers might see their behavior72

differing from the general behavior of a cluster (e.g., work cluster). This difference is captured by pHMMs73

by introducing new activities or, inversely, canceling or ignoring others. Subsequently, the scored activity74

sequences can be assessed to measure how similar or dissimilar these are from the cluster (Liu et al., 2015).75

In this paper, we propose an integrated framework including both a population synthesis approach (Fa-76

rooq et al., 2013) and a profiling method (Liu et al., 2015) capable of describing and assigning the activity77

sequences for each individual of the synthetic population. The model is capable of considering, in an effi-78

cient manner, the behavioral effects of different influencing factors, which might vary between clusters. In79

this regard, the main trends in terms of travel behavior can emerge from the characterization achieved using80

the pHMMs.81

The remainder of this paper is organized as follows. First, the data, obtained from the Belgian National82

Household Travel Survey, are described. Subsequently, in Section 3, the details of the integrated framework83

are provided to enable implementation in different contexts. Then, the main results and the validation of84

the integrated framework are discussed (Section 4). Finally, the concluding remarks are formulated in85

Section 5.86

2. Data87

To investigate individuals’ daily activity-travel behaviors, we use data from the Belgian National House-88

hold Travel Survey of 2010 (Cornelis et al., 2012). The data include 37,680 recorded trips with respect to89

15,821 individuals distributed across the country. For each respondent, the data include a detailed sequenc-90

ing of trips with their respective characteristics (e.g., time expenditure, start-end locations, trip purpose,91

and mode preferences). With respect to the variables of interest, age, gender, socio-professional status92

and working time expenditure are considered in the modeling framework (Table 1). Furthermore, public93

transport subscription and driving license ownership are also synthesized as transport-related variables.94

Variable Basic Statistics
Age Mean: 46.54, Std. Dev.: 21.08
Gender Male: 47.87%, Female: 52.13%
Socio-Professional status Not schooled children: 0.08% - Student: 17.23% - Housewife (husband): 4.30%

Job seeker: 5.54% - Pensioner: 28.14% - Disabled person: 2.23% Blue-collar worker: 7.72%
White-collar worker (executive): 3.51% White-collar worker (non-executive): 21.72%
Self-employed person: 3.96% - Liberal profession: 1.11% - Teacher: 3.76% Farmer: 0.23% - Other: 0.48%

Work time expenditure Mean: 36.68 h/week, Std. Dev.: 11.36 h/week
Public transport subscription No: 77.33%, Yes: 22.67%
Driving license ownership In progress: 4.90%, No: 24.87%, Yes: 70.23%

Table 1: Data description of the arbitrary explanatory variables

Table 2 presents the percentage of the recorded trips where, the outcome is the trip purpose and the95

explanatory variables are age, gender, socio-professional status of the travelers, working time expenditure,96

public transport subscription and driving license ownership. The values of the different explanatory vari-97

ables are expressed in terms of proportion (%) except for working time expenditure, which is expressed in98
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Trip purpose (*) 1 2 3 4 5 6 7 8 9 10 11 12
Age
6-31 years 4.89 40.03 9.05 1.30 14.51 2.09 7.19 1.54 7.51 2.13 7.06 2.68
31-45 years 13.46 37.20 16.77 2.96 0.63 2.41 10.62 2.42 4.99 1.99 4.25 2.30
45-59 years 7.25 38.83 16.73 3.06 0.49 1.92 13.06 3.59 5.74 3.15 3.82 2.37
59+ 5.36 40.36 3.10 0.72 0.32 1.88 20.27 5.94 7.94 5.30 4.71 4.10

Gender
Male 6.64 39.32 12.79 3.10 4.09 2.32 11.14 2.95 6.31 3.05 5.44 2.85
Female 8.77 38.96 10.14 1.04 4.25 1.79 14.04 3.70 6.78 3.15 4.54 2.85

Socio-professional Status
Student 3.51 41.72 1.49 0.19 23.78 1.75 5.72 1.04 7.21 2.08 8.58 2.92
Housewife (husband) 13.79 39.41 0.74 0.00 0.99 1.48 19.21 4.93 7.88 3.69 4.19 3.69
Job seeker 9.30 39.47 2.09 0.76 3.04 2.28 15.94 4.17 9.11 5.69 4.17 3.98
Pensioner 5.82 40.62 0.99 0.23 0.33 1.83 20.92 6.29 8.11 5.53 5.11 4.22
Disabled person 9.55 40.76 0.64 0.00 1.27 2.55 17.20 7.01 7.64 5.10 5.10 3.18
Blue-collar worker 7.08 40.05 24.52 4.63 0.27 1.09 8.72 1.91 5.45 1.77 3.00 1.50
White-collar worker (executive) 8.64 35.95 21.41 3.93 0.59 3.73 9.63 2.55 4.13 1.77 5.11 2.55
White-collar worker (non-executive) 9.43 37.45 20.48 2.91 0.39 2.26 10.72 2.51 5.52 2.08 4.23 2.01
Self-employed person 8.82 36.65 21.49 6.79 0.23 2.26 8.82 2.71 4.52 1.81 3.17 2.71
Liberal profession 7.78 34.73 20.36 9.58 0.60 2.99 9.58 2.99 4.79 1.80 2.99 1.80
Teacher 10.71 38.16 16.35 1.50 0.56 2.07 12.22 3.01 6.58 2.07 4.32 2.44
Farmer 10.53 42.11 10.53 5.26 0.00 0.00 10.53 0.00 10.53 5.26 5.26 0.00
Other 8.00 38.00 8.00 2.00 2.00 6.00 12.00 4.00 4.00 4.00 8.00 4.00

Working time expenditure
Mean (h/week) 42.19
Std. Dev. (h/week) 11.12
Public transport subscription
No 8.48 38.92 11.71 2.28 2.92 1.99 13.04 3.32 6.62 3.07 4.77 2.89
Yes 5.04 40.28 10.40 1.24 8.55 2.30 10.98 3.33 6.25 3.20 5.71 2.72
Driving license ownership
In progress 5.69 40.66 6.95 0.63 11.52 2.67 10.18 2.95 7.23 2.74 5.62 3.16
No 3.49 42.39 4.05 0.31 15.87 1.60 10.36 2.69 6.84 3.14 6.61 2.66
Yes 8.81 38.39 13.39 2.53 1.05 2.14 13.23 3.49 6.43 3.11 4.56 2.88
(*) 1-bring/get, 2-home, 3-work, 4-for work, 5-education, 6-meal, 7-daily-shopping, 8-service, 9-visit, 10-tour, 11-entertainment, 12-other

Table 2: Cross-classification of recorded trips by purpose within each demographic segment (in %)

hours/week. Regarding the general distribution of the trips, one can clearly observe that the trips toward99

home are the most important in terms of proportions.100

Furthermore, it should be emphasized that commuting patterns also account for a relatively significant101

share of trips and are mainly represented by professionally active people (see socio-professional status).102

Young people essentially undertake trips (14.51%) with the objective of attending a school or university to103

study. In parallel, they are active for visiting friends and family (7.51%) and also participating in extra-104

activities (7.06%) (e.g., sports and entertainment). Individuals belonging to the oldest age category spend a105

significant amount of time on daily shopping (20.27%) and visiting (7.94%).106

Regarding working time expenditure, we can observe that the average number of hours is relatively high107

(42.19 hours/week). This variable is an indicator of activity time expenditure (work). As mentioned later108

in the paper, the pHMMs do not represent exact temporal information. Thus, it is technically possible to109

synthesize a variable that can be used afterward to classify the population and obtain some trends in terms110

of activity durations.111
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3. Methodology112

3.1. Framework113

To develop the integrated travel demand modeling framework presented in Figure 1, two types of114

datasets are used: [A] socio-demographic/transport-related variables derived from the individuals’ file of115

the Belgian Household Travel Survey and [B] the trips file including the activity-travel diaries. As detailed116

before, we propose to select a set of pertinent socio-demographic explanatory variables as the basis for com-117

paring the different clusters in terms of activity-travel behavior. Subsequently, activity sequences will be118

derived from the trip diaries. In this context, we will obtain a set of individuals with socio-demographic in-119

formation (e.g., age, gender, socio-professional status and working time expenditure) and transport-related120

variables (i.e., public transport subscription and driving license ownership) associated with their respective121

activity sequences.122

At this level, the data processing will be performed in parallel and in a completely independent manner.123

On one side, a synthetic population [2] is built using a simulation-based approach [1]. The population124

synthesis procedure plays a key role within the modeling framework because it provides a better estimate125

of the heterogeneity of the population in comparison to standard population synthesis techniques such as126

IPF (Farooq et al., 2013). In this regard, the synthesized population represents a better approximation and127

is true regardless of the selected attribute. A direct implication is that this approach enables the estimation128

of the precise proportion of clusters regarding the whole population.129

In parallel with the population synthesis, we derive the activity sequences from the activity-travel diaries130

[B] so that every respondent is associated with a daily activity-travel pattern/plan. At the end of step [3],131

we will have a full synthetic population as well as a detailed list of individuals characterized by socio-132

demographic attributes and transport-related variables as well as their respective activity sequences.133

In the following step [4], it is possible to establish completely homogeneous clusters to isolate the effects134

of the various explanatory variables to achieve more accurate analysis. Moreover, it is also important to135

measure the coupled effects of mixed factors for investigating potential interactions.136

Regarding the characterization of the activity sequences with profile Hidden Markov Models, a proce-137

durally less complicated version of Liu et al. (2015) is implemented to gain computational efficiency in138

the calibration phase. In the approach proposed by Liu et al. (2015), before calibrating the Markov Chain139

profiles, it is necessary to classify the activity sequences according to their longest activities. Then, an140

identification process of the most recurring activities, based on the definition of the regularity (Liu et al.,141

2015), is recommended along with the determination of the most frequent activity transitions. Finally, for142

every subdivision, templates are defined so that the activity sequences related to the clusters are aligned by143

employing multiple sequence alignment methods based on their respective template. It is only after these144

three steps that performed that the calibration of the Markov profiles becomes possible. We can clearly145

notice that the method of Liu et al. (2015) is relatively heavy to implement in its entirety. In this context,146

we suggest a less heavy methodology to implement while maintaining the key component of the model-147

ing chain represented by the pHMM. This can be realized by estimating the effects of a combination of148

explanatory variables of the activity sequences.149
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[B] Activity-

Travel Diaries 

(ATD)

[A] Socio-demographics or other 

variables (e.g. age, gender, socio-

professional status, working time 

expenditure etc.)

[1] Monte Carlo Markov 

Chain Simulation

[2] Synthetic 

Population 

[3] Selecting socio-demographics to compare the 

behaviors in activity-travel patterns

[4] Clustering of the synthesized population according to socio-

demographics + Related Activity Sequences extracted from ATD

[5] Multiple sequence alignment + Profile 

Hidden Markov Models estimation

[6] Characterization of the clusters (activity-travel sequences) 

including mixed socio-demograhics effects or not 

Figure 1: Overall modeling framework
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With respect to the estimation of the profile Hidden Markov Models [5], the procedure consists of150

aligning the activity sequences within each cluster using an existing multiple sequence alignment approach151

(SAM). Subsequently, the transition and emission probabilities of the different pHMMs can be estimated152

so that every group is characterized by its dedicated model. In this context, the daily activities of the153

individuals are qualitatively and quantitatively simulated. In addition, both regular and irregular activities154

are implicitly included in the estimation conducted by the pHMM.155

The strength of this framework lies in its capacity to characterize daily activity-travel sequences of very156

heterogeneous groups; in contrast, a purely descriptive statistical analysis would become quasi-incomprehensible157

and difficult to dress.158

3.2. Synthetic population159

Posterior samples are generated by a Gibbs sampling procedure using partial views of the true joint160

probability, i.e., the conditional probabilities. Theoretically, full conditional distributions should be defined161

and included within the algorithm; however, full conditionals are rarely available in practice. Thus, partial162

or even marginal distributions are used as substitutes (Farooq et al., 2013). Let q(x) be an initial set of163

random attributes, x = (x1, x2, ..., xi, xn) the set of attributes and π the conditional probability. Then, the164

algorithm is structured as follows:165

Step 1: initialize π(x)∼q(x)166

Step 2: samples from CD q167

x1∼π(x1 | x2, x3, ..., xi, ..., xn)168

x2∼π(x2 | x1, x2, ..., xi, ..., xn)169

x3∼π(x3 | x1, x2, ..., xi, ..., xn)170

...171

xi∼π(xi | x1, x2, ..., xi−1, xi+1, ..., xn)172

...173

xn∼π(xn | x1, x2, ..., xi, ..., xn−1)174

Step 3: repeat until reaching the population size175

As mentioned previously, four socio-demographic and two transport-related variables are included in the176

form of conditionals as input for the Gibbs sampler. In this regard, data preparation represents an advantage177

compared to the amount of data necessary for the IPF (Farooq et al., 2013). In particular, we attempt to178

draw agents from the partial views of the true joint probability using Gibbs sampling. This technique is179

particularly flexible for handling multiple data sources with different spatial scales (Farooq et al., 2013). A180

simulation-based approach typically needs a set of conditional probabilities π(xi | xj), where i and j are181

respectively referring to the dependent and independent variables.182

To reach steady state, it is advisable to warm the Gibbs sampler (i.e., using approximately 1000 itera-183

tions in our case). To reduce computation time, we save the generated population in a .csv file. In this way,184

it is possible to extend the size of the population by starting with this file. We simply have to extract the185

characteristics of the last agent to use it as the initial condition for the Gibbs sampler. In addition, in the186

context of this study, we intend to generate a population of 250,000 agents to serve as a basis. Then, from187
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Dependent variable Independent variables
Socio-professional status (full) Age - Gender - WT expenditure (**) - PT subscription (*) - Driving license ownership
Gender (full) Age - Socio-professional status - WT expenditure - PT subscription - Driving license ownership
Age (full) Gender - Socio-professional status - WT expenditure - PT subscription - Driving license ownership
WT expenditure (full) Age - Gender - Socio-professional status - PT subscription - Driving license ownership
PT subscription (full) Age - Socio-professional status - WT expenditure - Gender - Driving license ownership
Driving license ownership (full) Age - Socio-professional status - WT expenditure - Gender - PT subscription
(*) Public Transport subscription
(**) Working Time expenditure

Table 3: List of Conditional Distributions

this basis, a sub-sample of 110,000 agents is randomly extracted. This approach allows for a reduction in188

the possible correlations between successive draws. The sub-sample represents approximately 1% of the189

population in Belgium. Because we are only interested in the proportions of specific groups with respect190

to the full population, it is not necessary to generate a larger number of agents. Indeed, the proportions191

will remain asymptotically identical. In addition, if we were addressing an agent-based micro-simulation192

problem, it would also have been necessary to approach the problem with a similar population size.193

As outlined by Farooq et al. (2013), although the method provides a more accurate representation of194

the population, the simulation-based approach is not yet capable of synthesizing a full household synthetic195

population with multiple individuals. In this particular situation, an alternative technique, i.e., IPU, could be196

adopted. Moreover, the synthetic population generation procedure can be easily replaced by IPU. Indeed,197

the integrated framework presented in this paper is designed to ensure a sufficient level of modularity. Al-198

ternatively, when the dataset includes the associations in-between households and their related individuals,199

i.e., through a referencing system, it is possible to include mixed household and individual effects. First, the200

target cluster of households is isolated. Then, the activity sequences associated with the individuals within201

the selected households are processed. In this way, household effects can also be considered.202

3.3. Activity sequences characterization203

After sorting beforehand the activity sequences according to their main activity, the standard charac-204

terization method of activity sequences is structured according to three different steps (Liu et al., 2015).205

(a) The first step consists of measuring the regularity of the activities with respect to their related clusters.206

In the same way, the most probable sequential order of the activities is identified for every group. In this207

context, a complete template (reference activity chain) characterizing the most frequent activities as well as208

their sequential order is defined.209

Subsequently, (b) the following step consists in aligning the activity sequences based on the templates210

and with respect to every cluster. This approach allows activity sequences that are perfectly aligned, with211

identical dimensions, to be obtained.212

Finally, (c) the aligned activity sequences are characterized by calibrating the pHMMs. The characteri-213

zation implies the estimation of the transition, emission, insertion and deletion probabilities.214

Note that, within the framework of our study, we do not group the agents according to their main215

activities. Thus, it is not necessary to perform a cluster analysis to apply step (a) and allow the identification216

of the template. On the contrary, we only attempt to estimate the effects of selected explanatory variables.217

In this context, step (a) can be bypassed. Indeed, because the population is extremely heterogeneous, it218

is not possible to define a template if activity chains of the same group possess different types of main219

activities. One can refer to the research of Liu et al. (2015) for a more thorough description of the modeling220

framework.221

Figure 2 describes the full parameters of a pHMM, including the emission and transition conditional222

probabilities, as well as the match mi, insertion ii and deletion di states. Note that both the match and223
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insertion states are capable of emitting an activity type Ai. m0 is the beginning state, and mN the final224

state. N is the length of the chain containing the largest sequence of activities within the cluster. The225

bold arrows represent an illustration of all the possible transition combinations between the states m2 and226

m3. Furthermore, an insertion state can evolve toward the same insertion state (symbolized by the loop);227

otherwise, the following match state is selected. The parameters of the pHMM and the SAM have been228

estimated using the Bioinformatics Toolbox of MATLAB.229
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Figure 2: Parameters of the profile Hidden Markov Model
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4. Results230

4.1. Synthetic population231

Figure 3 presents the comparison between the synthetic population, considering every explanatory vari-232

able, and the reference dataset. The results clearly indicate that the generated synthetic population is a suit-233

able approximation. Furthermore, the simulation-based approach provides good estimates of the marginal234

distributions for the selected attributes. With respect to the joint distributions presented in Fig. 4, the results235

demonstrate a good fit between the synthetic population and the reference dataset. Indeed, the slope is close236

to 1, with an R2 value of 0.87. Note that each point represents the proportion of the combination of six at-237

tributes. In this study, only full conditions have been implemented in the framework. Therefore, the spread238

of the data points cannot be explained by the use of partial conditions. Moreover, the combined effects of239

scalability and dimensionality can explain slight deviations in the joint distributions of the simulation-based240

approach.241
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Figure 3: Comparison between the synthetic population and the reference dataset

In addition, some slight deviations may be observed within the marginal distributions (Fig. 3) as well as242

the joint conditional distributions (Fig. 4) due to the random effects included in the Gibbs sampler, which243

are mainly related to the stochastic nature of the model. In this regard, we assume that an increase in the244

size of the micro-data can play an effective role in the mitigation of the error.245

Furthermore, studies have shown that an increase in the sample fraction is conducive to mitigating the246

input uncertainty (Rasouli and Timmermans, 2014). To enhance the stability of the forecasts, we propose247

to run the Gibbs sampler repeatedly such that the final outcome is the average of multiple model runs. As248
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outlined by Rasouli et al. (2012), this procedure also contributes to decreasing uncertainty but from the249

model perspective only.250
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Figure 4: Comparison between the simulated and observed joint distributions

To assess the reliability of the population synthesis method, a more disaggregate approach consisting in251

a detailed clustering of the simulated and observed populations with respect to all the levels of the attributes252

defined in Table 3. Based on this clustering procedure, the deviations between the two populations from253

their related joint distributions are estimated. In this regard, the Root Mean Square Error (RMSE) is an254

indicator which allows to assess how close the synthesized population is to the observed one. The RMSE255

is defined as follows:256

RMSE =
√
E((θ̃ − θ)2) =

√∑n
i=1(ỹi − yi)2

n
(1)

where θ̃ is the estimator of the population, θ is the observed population, and n is the number of predicted257

values. Vovsha et al. (2015) used the RMSE to estimate the goodness-of-fit of the synthesized populations258

for different zonal systems. The RMSEs presented in Table 4 show that, even in the context of a finer259

analysis, the model is capable of maintaining a satisfactory level of accuracy. Overall, most of the errors are260

close to 0, except for the values combined with level 13 of the socio-professional variable (i.e., the farmers).261

However, this only represents a small portion of the full population (0.23% (Table 1)). In this regard, when262

the number of observations within a specific combination of variables is low, it is more probable to observe263

important deviations in terms of RMSE.264
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Socio-professional status × Age 1 2 3 4 5 6 7 8 9 10 11 12
1 - 0.027 0.058 - - - - - - - - -
2 0.013 0.026 0.017 0.027 0.049 0.074 0.080 - - - - -
3 0.036 0.059 0.018 0.034 0.055 0.024 0.025 0.032 - - - -
4 0.027 - 0.023 0.018 0.021 0.017 0.011 0.055 - - - -
5 - - - 0.056 0.031 0.023 0.016 0.007 0.015 0.041 0.070 0.154
6 0.118 - 0.056 0.031 0.023 0.016 0.014 0.061 - - - -
7 0.019 - 0.018 0.030 0.027 0.032 0.037 0.078 - - - -
8 0.036 - 0.036 0.032 0.035 0.029 0.033 0.071 - - - -
9 0.020 - 0.007 0.007 0.012 0.012 0.011 0.037 - - - -

10 0.038 - 0.043 0.043 0.040 0.039 0.047 0.026 - - - -
11 0.051 - 0.069 0.040 0.052 0.035 0.038 0.094 - - - -
12 0.021 - 0.038 0.023 0.015 0.018 0.023 0.072 - - - -
13 0.154 - 0.126 0.045 0.062 0.065 0.066 0.154 - - - -
14 0.081 - 0.063 0.046 0.043 0.058 0.056 - - - - -

Table 4: Root Mean Square Error (RMSE) of the Simulated Joint Distributions with respect to different combinations of age and
status

4.2. Characterization of the activity sequences265

After building the synthetic population, we define criteria of analysis (e.g., gender and socio-professional266

status) to extract the activity-travel patterns. The objective of the population synthesis is to estimate the267

proportion of the categories of the studied people within the overall population. Subsequently, the activity268

sequences are extracted from the activity-travel diaries describing the succession of the activities of the269

studied clusters.270

Regarding the simulation tools, various programs in bioinformatics are available for aligning multiple271

activity sequences and also estimating the parameters of pHMMs. Thus, it is not necessary to develop a full272

code for sequence alignment and parameter estimation. This proves that this framework can be applied in a273

rather fast and effective manner.274

As advised by Liu et al. (2015), some assumptions have been made regarding all the activity sequences.275

Indeed, we suppose that all the sequences begin and end with the same activity, in this particular case, home276

(H). Thus, the first and last positions possess a probability that is approximately equal to 1. In this regard,277

no deletion states occur in the first position, and no transition probabilities need to be defined in the last278

position because everything is shifting toward home.279

Note that the number of positions is defined by the activity chain with the highest number of successively280

different activities, i.e., 13 activities in this paper. If a smaller size is taken, the profile-HMM will have281

to aggregate some information to be able to estimate the probabilities, thus reducing the quality of the282

information. On the other hand, if a greater profile size is fixed, more parameters will have to be estimated;283

however, this would not improve the accuracy and would make the analysis more complex. In this regard,284

one can understand that determining the number of positions depends exclusively on the longest chain.285

By referring to the work of Liu et al. (2015), the approach is similar except that the longest activity is286

called a template and is built from an identification of the regular and irregular activities as well as their287

sequential order. Note that in Liu et al. (2015), built clusters are only based on the main activities, i.e.,288

the work cluster. By including socio-demographics in our paper, some additional travel patterns can be289

revealed, e.g., education for young people. In this regard, the activity sequencing is sensitive to changes in290

the socio-demographics.291

To illustrate the methodology, we propose some case studies wherein the differences in behavior are292

highlighted through the parameter estimates. Table 5 presents the transition and emission probabilities293

resulting from an estimated pHMM, where the results for the full population of Belgium are included to294

highlight the main patterns of conduct.295
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For each column of the emission probabilities, the highest values are in bold. In this way, we can296

extract some key information. For example, throughout all the positions, the commuting patterns are quite297

significant in terms of importance compared to the remainder of the population and specifically in position298

4.299

The trends suggest that some activities, such as leisure, sports and visiting family and friends (see300

between positions 9-12), are preferred to be conducted at the end of the day. In contrast, the daily shopping301

activity is distributed throughout the day.302

Position (k) 1 2 3 4 5 6 7 8 9 10 11 12 13
Transition probabilities
π(mk+1,mk) 0.548 0.583 0.270 0.644 0.503 0.649 0.633 0.747 0.093 0.999 0.977 1.00 –
π(ik,mk) 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.031 0.000 0.000 0.000 –
π(dk+1,mk) 0.452 0.417 0.730 0.356 0.497 0.351 0.367 0.253 0.876 0.000 0.023 0.000 –
π(mk+1, ik) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.510 0.500 0.500 0.500 –
π(ik, ik) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.490 0.500 0.500 0.500 –
π(mk+1, dk) 0.263 0.041 0.475 0.035 0.056 0.076 0.098 0.115 0.018 0.066 0.186 0.648 –
π(dk+1, dk) 0.737 0.959 0.525 0.965 0.943 0.924 0.902 0.885 0.982 0.934 0.814 0.352 –
Emission probabilities
π(H) (home) 1 0.002 0.691 0.046 0.457 0.282 0.154 0.533 0.062 0.097 0.489 0.004 1
π(W ) (work) – 0.018 0.018 0.651 0.254 0.287 0.237 0.055 0.080 0.065 0.125 0.237 –
π(G) (bring/get) – 0.140 0.036 0.079 0.029 0.052 0.095 0.093 0.204 0.065 0.057 0.091 –
π(E) (education) – 0.206 0.009 0.041 0.004 0.017 0.041 0.005 0.009 0.032 0.011 0.008 –
π(M) (meal) – 0.020 0.021 0.002 0.043 0.012 0.018 0.017 0.049 0.064 0.023 0.008 –
π(S) (daily shopping) – 0.337 0.124 0.072 0.082 0.098 0.219 0.121 0.227 0.097 0.046 0.079 –
π(A) (service) – 0.080 0.033 0.017 0.029 0.046 0.047 0.028 0.009 0.065 0.011 0.012 –
π(F ) (visit) – 0.062 0.018 0.022 0.029 0.069 0.095 0.028 0.191 0.065 0.046 0.289 –
π(V ) (tour) – 0.066 0.009 0.017 0.014 0.029 0.012 0.022 0.009 0.097 0.023 0.174 –
π(R) (leisure, sports etc.) – 0.051 0.009 0.029 0.025 0.052 0.024 0.044 0.116 0.032 0.057 0.059 –

Table 5: Parameter Estimates for the Full Population of Belgium

It has been reported in various studies (Bhat and Singh, 2000) that most professionally active individuals303

go shopping after work on the road returning home or even later in the day. Because this category of people304

is important in term of size with respect to the full population, it is thus logical to obtain significant values305

(i.e., 21.9% in position 7 – 22.7% in position 9) later in the day.306

Furthermore, the bring/get activity is significantly present throughout the day as well. However, it is307

necessary to note that various groups of the population are implicitly included in the results highlighted308

in Table 5, which makes the clusters’ specific features more difficult to capture. In this context, a more309

detailed cluster analysis is necessary to allow one to distinguish which part of the population conducts310

shopping activities and during approximately which period of the day.311

When characterizing the full population, it is indeed less obvious to consider what are the proportions312

as well as the categories of people who perform a given activity at a given moment of the day.313

Table 6 presents the parameter estimates of the emission and transition probabilities for individuals less314

than 31 years of age. This category groups most of the students and also some young workers. After315

isolating the target sub-population, we can note the important increase in the education activity; this is316

synonymous with important trips toward schools and universities.317

Note that young people also dedicate a portion of their time to conducting sports or entertainment activ-318

ities. Furthermore, they organize, as a general rule, such activities after their courses (see position 5). If we319

need any reminder of this, we simply need to observe the sequencing of the activities within the positions.320

The great majority of the educational activities are grouped in position 2 (43.3%). Subsequently, it is only321

from position 4 that young people perform secondary activities such as shopping. Indeed, an important322
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portion of young people (students/novice workers) live alone during their studies or at the beginning of323

their professional lives; they also have to fulfill their vital needs by moving quasi-daily to shop.324

These results are logical and compatible with the descriptive analysis presented in Table 2. The main325

activity-travel patterns (e.g., education, visiting friends and family, entertainment and sports) have been326

characterized by the pHMM. Furthermore, this proves that the calibration of the pHMM was correct. This327

mode of comparison clearly reveals the added value of the pHMM compared to a classic analysis of de-328

scriptive statistics. Not only is the establishment of activity sharing possible throughout the day but the329

result also indicates that the sequencing of the activities can be obtained thanks to the positioning system.330

Position (k) 1 2 3 4 5 6 7 8 9 10 11 12 13
Transition probabilities
π(mk+1,mk) 0.876 0.529 0.333 0.362 0.462 0.090 0.998 0.352 0.411 0.757 0.988 1.000 –
π(ik,mk) 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 –
π(dk+1,mk) 0.124 0.471 0.667 0.638 0.538 0.910 0.001 0.648 0.589 0.243 0.012 0.000 –
π(mk+1, ik) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 –
π(ik, ik) 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 –
π(mk+1, dk) 0.256 0.321 0.035 0.066 0.029 0.034 0.070 0.065 0.042 0.083 0.174 0.668 –
π(dk+1, dk) 0.744 0.679 0.965 0.934 0.971 0.997 0.930 0.935 0.958 0.917 0.826 0.332 –
Emission probabilities
π(H) (home) 1 0.000 0.598 0.297 0.180 0.395 0.046 0.099 0.287 0.158 0.474 0.007 1
π(W ) (work) – 0.255 0.070 0.143 0.132 0.156 0.046 0.077 0.283 0.131 0.099 0.106 –
π(G) (bring/get) – 0.030 0.068 0.078 0.083 0.070 0.046 0.047 0.038 0.113 0.064 0.146 –
π(E) (education) – 0.433 0.033 0.064 0.132 0.091 0.046 0.077 0.007 0.018 0.020 0.024 –
π(M) (meal) – 0.011 0.036 0.023 0.019 0.049 0.046 0.017 0.026 0.045 0.035 0.061 –
π(S) (daily shopping) – 0.082 0.074 0.146 0.145 0.029 0.136 0.090 0.091 0.153 0.062 0.109 –
π(A) (service) – 0.020 0.015 0.026 0.035 0.017 0.046 0.022 0.019 0.018 0.027 0.026 –
π(F ) (visit) – 0.070 0.060 0.092 0.038 0.033 0.046 0.249 0.113 0.131 0.072 0.255 –
π(V ) (tour) – 0.030 0.008 0.064 0.024 0.008 0.046 0.009 0.030 0.063 0.030 0.042 –
π(R) (leisure, sports etc.) – 0.066 0.033 0.049 0.186 0.111 0.046 0.270 0.068 0.126 0.094 0.213 –

Table 6: Parameter Estimates for the Population of Belgium below 31 Years of Age

4.3. Comparison between the simulation-based approach and the IPU-based approach331

To demonstrate the efficiency of the integrated framework with respect to standard approaches, we332

propose to compare, at each level of the framework, a sub-module with an existing technique. First, the333

simulation-based approach is compared with the iterative proportional updating (IPU) algorithm. Then,334

we show the added value of the pHMMs over a standard SAM. In this paper, it is important to distinguish335

the sequence alignment process (SAM) necessary for aligning all the activity sequences and the pHMM336

characterization. This step is fundamental because the activity sequences are structured such that deletion337

states are added to ensure equal lengths for each activity sequence. In this context, we can describe this338

integrated framework as a step above other previous approaches. Regarding the comparison between the339

IPU algorithm and the simulation-based approach, it is quite difficult to determine which method performs340

better from an absolute perspective. We must qualify the comparison in light of different aspects involved341

within each approach. For example, the IPU algorithm requires a huge amount of data (PUMS and all342

the total controls) to determine the weights associated with the corresponding agents (Ye et al., 2009). In343

contrast, the simulation-based approach is only based on the calibration of the conditional distributions344

(Farooq et al., 2013). In this context, only PUMS are used. Thus, a completely fair comparison is very345

complex. In addition, a throughout data preparation needs to be realized to classify all the variables in the346

correct format (table of frequencies) so that it can be included within IPU (Ye et al., 2009). In addition, all347

the total controls corresponding to all the levels of the set of attributes are needed, and the matching between348
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the format variables of the total controls and the PUMS should be the same. In practice, the implementation349

is quite heavy and computational intensive. However, the simulation-based approach is characterized by its350

great flexibility (Farooq et al., 2013). In addition, the PUMS can be used under their original format, i.e., as351

a set of observations with respect to different attributes. In practice, it is important to propose approaches352

that are capable of using a minimum amount of data to mitigate the phenomenon of data dependency in353

such a way that the quality of the results is preserved. To our knowledge, no studies have investigated354

the comparison between the simulation-based approach and IPU. Note that in Farooq et al. (2013), one355

can find the comparison with IPF. To ensure a fair comparison between both approaches, we will compare356

the methods for the synthesis of 4 attributes as advised by Farooq et al. (2013) so that zero-cell and zero-357

marginal problems, which can lead to non-convergence, can be avoided. In addition, let us consider the358

BELDAM travel survey because it describes the full population. In this context, the total controls can be359

derived for IPU as well as the seed. We suppose that the seed that is extracted represents 50% of the survey.360

In parallel, the same seed is included into the simulation-based approach. We will also consider a full seed361

for the simulation-based approach to provide it with full information and establish a relatively equal amount362

of inputs with respect to both methods. Table 7 presents the comparison between the different methods and363

configurations. Note that the intercepts are not included because they are all approximately zero.364

Method Simulation-based (full PUMS) Simulation-based (50% PUMS) IPU-based (50% PUMS + total controls)
R-square 94.6% 93.7% 92.4%
Slope 1.075 1.075 0.932
RMSE 0.00112 0.00121 0.00139

Table 7: Comparison between the simulation-based approach and IPU
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The results presented in Table 7 clearly show the advantage of the simulation-based approach over IPU.365

In this regard, the conclusions are in accordance with those presented by Farooq et al. (2013). We can366

see that using the full PUMS for the simulation-based approach does not improve the R-squared value367

significantly. A 50% PUMS is largely sufficient to ensure accurate results. Furthermore, although the368

amount of data is low compared to IPU, the simulation-based approach is capable of providing a synthetic369

population with an RMSE that is reduced by -14.88% and an R-squared that is improved by 1.4%.370

Figures 5a, 5b and 6 present the comparison between the joint distributions of the simulated populations371

and the reference dataset. Each circle is a proportion of a combination of 4 attributes. Using these figures,372

we can see that the simulation-based approach is capable of preserving good estimates for the important373

proportions, whereas IPU provides a poorer performance. However, IPU maintains very good estimates374

for small proportions, which is not the case for the simulation-based approach. However, given that the375

absolute differences are more important for high proportions and less important for small proportions, the376

RMSE is thus higher under the simulation-based approach than under IPU.377
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Figure 6: Comparison of the joint distributions with respect to IPU

4.4. Profile-HMM validation results378

To ensure that the estimated transition and emission probabilities are accurate, we propose two im-379

portant indicators: (i) the proportions of the trip patterns and (ii) the occurrences of the different types380

of activities with respect to the full population. First, we generate a set of activity sequences from the381

estimated profile-HMM. Then, if the comparison between the indicators of the synthesized and observed382

activity sequences demonstrates that they are equivalent, then the parameter estimates have been estimated383

properly. As mentioned previously, we focus on the main trip patterns. In this regard, we compare all the384

trip patterns starting from home toward any other activity location and vice versa. The results presented in385

Figures ?? and 8 reveal that the main trip patterns have been correctly captured by the calibrated profile-386

HMM. This result is particularly important in the context of agent-based modeling, i.e., MATSim. Indeed,387
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the estimation of the traffic flows is especially affected by the quantity of trips and their related patterns. An388

over- or under-estimation may have a significant impact on the predictions in terms of traffic jams and/or389

traffic flows. To complete the comparison, we have also presented the fit of the simulated and observed390

proportions of trip patterns. Table 8 presents the main statistical metrics. Although some minor deviations391

might be depicted, we can consider that the model is able to produce good estimates of the trip patterns392

and their proportions within the overall modeling framework. The R-square values between brackets, pre-393

sented in Table 8, correspond to the regression models that include the intercept. Note that these R-square394

values are better in comparison to those of the models without intercept. This can be explained by the395

under-estimation in the simulated values for uncommon trip patterns (see Fig. 8).396

Model Slope R-squared RMSE (in %)
Trip patterns 1 (H to A) 0.80 (0.65) 0.86 (0.96) 0.23
Trip patterns 2 (A to H) 0.87 (0.68) 0.72 (0.82) 0.21

Table 8: Comparison between the synthesized activity sequences and the observed sequences for different statistical metrics
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Figure 7: Comparison between the joint distributions with respect to the trip patterns

With respect to the comparison of the proportion of activities for the full population, the results presented397

in Figure 9 and Figure 10 also indicate a good match between the simulated and observed activity sequences398

(R-squared=0.99). In this regard, these results prove that the previously presented emission probabilities399

are sufficiently accurate and reliable.400

5. Conclusion401

In this paper, we present an integrated framework including a synthetic population approach (Farooq402

et al., 2013), together with a profiling method (Liu et al., 2015), for characterizing activity-travel patterns403

from both qualitative and quantitative perspectives.404
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Figure 8: Comparison between the marginal distributions with respect to the trip patterns
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Figure 9: Comparison between the marginal distributions with respect to activity occurrence

The synthetic population sets up the connection between multiple micro-datasets. Indeed, the condi-405

tional probabilities are built so that they include the information resulting from all the available sources. In406

this regard, their correct determination represents a highly important result. Given the high performances407

of the simulation-based approach compared to standard methods (e.g., IPF), we opted for this technique to408

be introduced within the global modeling chain. Furthermore, the flexibility of this technique is particularly409

adapted to address partial micro-datasets. The results presented in Figure 4 clearly indicate that there is a410

scope that is able to fit the true population by implicitly merging different micro-datasets while ensuring411

high accuracy. Thus, these findings are in complete agreement with the conclusions of Farooq et al. (2013).412

A limitation of the simulation-based population synthesis is that the synthesis of households with multiple413

individuals is not yet possible. Nonetheless, as discussed in the methodological section, one could take into414
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Figure 10: Comparison between the joint distributions with respect to activity occurrence

account household effects by using IPU in a similar way or by clustering the target households with their415

associated individuals. In this regard, we can conclude that the consecutive steps of our framework, i.e., the416

multiple-sequence alignment and the profile-HMM characterization steps, are not significantly affected. In417

the future and to preserve the presented framework, an extended population synthesis exclusively based on418

the simulation-based approach could be adopted at both levels (households and individuals) by consider-419

ing an additional module able to generate associations between households and individuals. An interesting420

prelude in this regard can be found in Anderson et al. (2014).421

The profiling approach enables the characterization of multiple activity sequences (activity regularity422

and sequential information) from only one model without neglecting any irregular activities. As a result,423

performing a comparison between clusters in terms of activity-travel patterns is much easier or investigating424

to what extent the activity-travel patterns of a specific group can be distinguished from the general behavior425

of a population.426

Furthermore, when the pHMM is calibrated using a training dataset, a non-limited number of activity427

sequences can be regenerated from the estimated pHMM according to the size of the studied cluster. This428

application is particularly interesting in the context of agent-based micro-simulation models. Indeed, most429

of them require a synthetic population describing the attributes and the activity sequences of every indi-430

vidual. In this regard, we assume that such a modeling framework can be adapted to handle problems of431

multi-agent model generation and, as a result, provide new insights for further research.432

Regarding the results, we indicated in Section 4.2 that the positions within a profile-HMM give the433

general trends of the activity sequencing from a temporal perspective. However, we consider that the434

approach presents a limitation at this level. Further developments of the framework should aim at the435

inclusion of the activity time dimension in a more explicit way.436

Furthermore, by isolating the target populations, the model allowed one to characterize the proportion of437
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these sub-populations of the total population as well as the main travel behaviors. With respect to the young438

population, we have clearly shown that education appears to play an essential role in the need for travel.439

Note that, in the context of more elaborate analysis, it is possible to estimate quantitatively the disparity440

between different combinations of explanatory variables in terms of activity characteristics choice.441
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