[1] Zlotnik, A., Yoshie, O., The chemokine superfamily revisited. Immunity 36:5 (2012), 705–716.
[2] Kleist, A.B., Getschman, A.E., Ziarek, J.J., Nevins, A.M., Gauthier, P.A., Chevigne, A., Szpakowska, M., Volkman, B.F., New paradigms in chemokine receptor signal transduction: moving beyond the two-site model. Biochem. Pharmacol. 114 (2016), 53–68.
[3] Bachelerie, F., Ben-Baruch, A., Burkhardt, A.M., Combadiere, C., Farber, J.M., Graham, G.J., Horuk, R., Sparre-Ulrich, A.H., Locati, M., Luster, A.D., Mantovani, A., Matsushima, K., Murphy, P.M., Nibbs, R., Nomiyama, H., Power, C.A., Proudfoot, A.E., Rosenkilde, M.M., Rot, A., Sozzani, S., Thelen, M., Yoshie, O., Zlotnik, A., International Union of Basic and Clinical Pharmacology. [corrected]. LXXXIX. Update on the extended family of chemokine receptors and introducing a new nomenclature for atypical chemokine receptors. Pharmacol. Rev. 66:1 (2014), 1–79.
[4] Bachelerie, F., Graham, G.J., Locati, M., Mantovani, A., Murphy, P.M., Nibbs, R., Rot, A., Sozzani, S., Thelen, M., New nomenclature for atypical chemokine receptors. Nat. Immunol. 15:3 (2014), 207–208.
[5] Vischer, H.F., Siderius, M., Leurs, R., Smit, M.J., Herpesvirus-encoded GPCRs: neglected players in inflammatory and proliferative diseases?. Nat. Rev. Drug Discovery 13:2 (2014), 123–139.
[6] Alcami, A., Viral mimicry of cytokines, chemokines and their receptors. Nat. Rev. Immunol. 3:1 (2003), 36–50.
[7] Rappocciolo, G., Hensler, H.R., Jais, M., Reinhart, T.A., Pegu, A., Jenkins, F.J., Rinaldo, C.R., Human herpesvirus 8 infects and replicates in primary cultures of activated B lymphocytes through DC-SIGN. J. Virol. 82:10 (2008), 4793–4806.
[8] Szpakowska, M., Chevigne, A., VCCL2/vMIP-II, the viral master KEYmokine. J. Leukoc. Biol., 2015.
[9] Geras-Raaka, E., Varma, A., Clark-Lewis, I., Gershengorn, M.C., Kaposi's sarcoma-associated herpesvirus (KSHV) chemokine vMIP-II and human SDF-1alpha inhibit signaling by KSHV G protein-coupled receptor. Biochem. Biophys. Res. Commun. 253:3 (1998), 725–727.
[10] Luttichau, H.R., Johnsen, A.H., Jurlander, J., Rosenkilde, M.M., Schwartz, T.W., Kaposi sarcoma-associated herpes virus targets the lymphotactin receptor with both a broad spectrum antagonist vCCL2 and a highly selective and potent agonist vCCL3. J. Biol. Chem. 282:24 (2007), 17794–17805.
[11] Qin, L., Kufareva, I., Holden, L.G., Wang, C., Zheng, Y., Zhao, C., Fenalti, G., Wu, H., Han, G.W., Cherezov, V., Abagyan, R., Stevens, R.C., Handel, T.M., Crystal structure of the chemokine receptor CXCR4 in complex with a viral chemokine. Science, 2015.
[12] Choi, Y.B., Nicholas, J., Autocrine and paracrine promotion of cell survival and virus replication by human herpesvirus 8 chemokines. J. Virol. 82:13 (2008), 6501–6513.
[13] Sozzani, S., Luini, W., Bianchi, G., Allavena, P., Wells, T.N., Napolitano, M., Bernardini, G., Vecchi, A., D'Ambrosio, D., Mazzeo, D., Sinigaglia, F., Santoni, A., Maggi, E., Romagnani, S., Mantovani, A., The viral chemokine macrophage inflammatory protein-II is a selective Th2 chemoattractant. Blood 92:11 (1998), 4036–4039.
[18] Shimizu, S., Brown, M., Sengupta, R., Penfold, M.E., Meucci, O., CXCR7 protein expression in human adult brain and differentiated neurons. PLoS ONE, 6(5), 2011, e20680.
[19] Humpert, M.L., Tzouros, M., Thelen, S., Bignon, A., Levoye, A., Arenzana-Seisdedos, F., Balabanian, K., Bachelerie, F., Langen, H., Thelen, M., Complementary methods provide evidence for the expression of CXCR7 on human B cells. Proteomics 12:12 (2012), 1938–1948.
[20] Wang, Y., Li, G., Stanco, A., Long, J.E., Crawford, D., Potter, G.B., Pleasure, S.J., Behrens, T., Rubenstein, J.L., CXCR4 and CXCR7 have distinct functions in regulating interneuron migration. Neuron 69:1 (2011), 61–76.
[21] Gerrits, H., van Ingen Schenau, D.S., Bakker, N.E., van Disseldorp, A.J., Strik, A., Hermens, L.S., Koenen, T.B., Krajnc-Franken, M.A., Gossen, J.A., Early postnatal lethality and cardiovascular defects in CXCR7-deficient mice. Genesis 46:5 (2008), 235–245.
[22] Sierro, F., Biben, C., Martinez-Munoz, L., Mellado, M., Ransohoff, R.M., Li, M., Woehl, B., Leung, H., Groom, J., Batten, M., Harvey, R.P., Martinez, A.C., Mackay, C.R., Mackay, F., Disrupted cardiac development but normal hematopoiesis in mice deficient in the second CXCL12/SDF-1 receptor, CXCR7. Proc. Natl. Acad. Sci. U.S.A. 104:37 (2007), 14759–14764.
[23] Burns, J.M., Summers, B.C., Wang, Y., Melikian, A., Berahovich, R., Miao, Z., Penfold, M.E., Sunshine, M.J., Littman, D.R., Kuo, C.J., Wei, K., McMaster, B.E., Wright, K., Howard, M.C., Schall, T.J., A novel chemokine receptor for SDF-1 and I-TAC involved in cell survival, cell adhesion, and tumor development. J. Exp. Med. 203:9 (2006), 2201–2213.
[24] Sanchez-Martin, L., Sanchez-Mateos, P., Cabanas, C., CXCR7 impact on CXCL12 biology and disease. Trends Mol. Med. 19:1 (2013), 12–22.
[25] Grymula, K., Tarnowski, M., Wysoczynski, M., Drukala, J., Barr, F.G., Ratajczak, J., Kucia, M., Ratajczak, M.Z., Overlapping and distinct role of CXCR7-SDF-1/ITAC and CXCR4-SDF-1 axes in regulating metastatic behavior of human rhabdomyosarcomas. Int. J. Cancer 127:11 (2010), 2554–2568.
[26] Luker, K.E., Lewin, S.A., Mihalko, L.A., Schmidt, B.T., Winkler, J.S., Coggins, N.L., Thomas, D.G., Luker, G.D., Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 31:45 (2012), 4750–4758.
[27] Sun, X., Cheng, G., Hao, M., Zheng, J., Zhou, X., Zhang, J., Taichman, R.S., Pienta, K.J., Wang, J., CXCL12/CXCR4/CXCR7 chemokine axis and cancer progression. Cancer Metastasis Rev. 29:4 (2010), 709–722.
[28] Wurth, R., Bajetto, A., Harrison, J.K., Barbieri, F., Florio, T., CXCL12 modulation of CXCR4 and CXCR7 activity in human glioblastoma stem-like cells and regulation of the tumor microenvironment. Front. Cell. Neurosci., 8, 2014, 144.
[29] Freitas, C., Desnoyer, A., Meuris, F., Bachelerie, F., Balabanian, K., Machelon, V., The relevance of the chemokine receptor ACKR3/CXCR7 on CXCL12-mediated effects in cancers with a focus on virus-related cancers. Cytokine Growth Factor Rev. 25:3 (2014), 307–316.
[30] Poole, L.J., Yu, Y., Kim, P.S., Zheng, Q.Z., Pevsner, J., Hayward, G.S., Altered patterns of cellular gene expression in dermal microvascular endothelial cells infected with Kaposi's sarcoma-associated herpesvirus. J. Virol. 76:7 (2002), 3395–3420.
[31] Rajagopal, S., Kim, J., Ahn, S., Craig, S., Lam, C.M., Gerard, N.P., Gerard, C., Lefkowitz, R.J., Beta-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7. Proc. Natl. Acad. Sci. U.S.A. 107:2 (2010), 628–632.
[32] Naumann, U., Cameroni, E., Pruenster, M., Mahabaleshwar, H., Raz, E., Zerwes, H.G., Rot, A., Thelen, M., CXCR7 functions as a scavenger for CXCL12 and CXCL11. PLoS ONE, 5(2), 2010, e9175.
[33] Luker, K.E., Steele, J.M., Mihalko, L.A., Ray, P., Luker, G.D., Constitutive and chemokine-dependent internalization and recycling of CXCR7 in breast cancer cells to degrade chemokine ligands. Oncogene 29:32 (2010), 4599–4610.
[34] Berahovich, R.D., Zabel, B.A., Lewen, S., Walters, M.J., Ebsworth, K., Wang, Y., Jaen, J.C., Schall, T.J., Endothelial expression of CXCR7 and the regulation of systemic CXCL12 levels. Immunology 141:1 (2014), 111–122.
[35] Coggins, N.L., Trakimas, D., Chang, S.L., Ehrlich, A., Ray, P., Luker, K.E., Linderman, J.J., Luker, G.D., CXCR7 controls competition for recruitment of beta-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS ONE, 9(6), 2014, e98328.
[36] Hartmann, T.N., Grabovsky, V., Pasvolsky, R., Shulman, Z., Buss, E.C., Spiegel, A., Nagler, A., Lapidot, T., Thelen, M., Alon, R., A crosstalk between intracellular CXCR7 and CXCR4 involved in rapid CXCL12-triggered integrin activation but not in chemokine-triggered motility of human T lymphocytes and CD34+ cells. J. Leukoc. Biol. 84:4 (2008), 1130–1140.
[37] Levoye, A., Balabanian, K., Baleux, F., Bachelerie, F., Lagane, B., CXCR7 heterodimerizes with CXCR4 and regulates CXCL12-mediated G protein signaling. Blood 113:24 (2009), 6085–6093.
[39] Bjorndal, A., Deng, H., Jansson, M., Fiore, J.R., Colognesi, C., Karlsson, A., Albert, J., Scarlatti, G., Littman, D.R., Fenyo, E.M., Coreceptor usage of primary human immunodeficiency virus type 1 isolates varies according to biological phenotype. J. Virol. 71:10 (1997), 7478–7487.
[40] Takakura, H., Hattori, M., Takeuchi, M., Ozawa, T., Visualization and quantitative analysis of G protein-coupled receptor-beta-arrestin interaction in single cells and specific organs of living mice using split luciferase complementation. ACS Chem. Biol. 7:5 (2012), 901–910.
[41] Zabel, B.A., Wang, Y., Lewen, S., Berahovich, R.D., Penfold, M.E., Zhang, P., Powers, J., Summers, B.C., Miao, Z., Zhao, B., Jalili, A., Janowska-Wieczorek, A., Jaen, J.C., Schall, T.J., Elucidation of CXCR7-mediated signaling events and inhibition of CXCR4-mediated tumor cell transendothelial migration by CXCR7 ligands. J. Immunol. 183:5 (2009), 3204–3211.
[42] Tanegashima, K., Suzuki, K., Nakayama, Y., Tsuji, K., Shigenaga, A., Otaka, A., Hara, T., CXCL14 is a natural inhibitor of the CXCL12-CXCR4 signaling axis. FEBS Lett. 587:12 (2013), 1731–1735.
[43] Hara, T., Tanegashima, K., CXCL14 antagonizes the CXCL12-CXCR4 signaling axis. Biomol. Concepts 5:2 (2014), 167–173.
[44] Luker, K.E., Gupta, M., Steele, J.M., Foerster, B.R., Luker, G.D., Imaging ligand-dependent activation of CXCR7. Neoplasia 11:10 (2009), 1022–1035.
[45] Ahn, S., Shenoy, S.K., Wei, H., Lefkowitz, R.J., Differential kinetic and spatial patterns of beta-arrestin and G protein-mediated ERK activation by the angiotensin II receptor. J. Biol. Chem. 279:34 (2004), 35518–35525.
[46] Moses, A.V., Jarvis, M.A., Raggo, C., Bell, Y.C., Ruhl, R., Luukkonen, B.G., Griffith, D.J., Wait, C.L., Druker, B.J., Heinrich, M.C., Nelson, J.A., Fruh, K., Kaposi's sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J. Virol. 76:16 (2002), 8383–8399.
[47] Raggo, C., Ruhl, R., McAllister, S., Koon, H., Dezube, B.J., Fruh, K., Moses, A.V., Novel cellular genes essential for transformation of endothelial cells by Kaposi's sarcoma-associated herpesvirus. Cancer Res. 65:12 (2005), 5084–5095.
[48] Hattermann, K., Held-Feindt, J., Lucius, R., Muerkoster, S.S., Penfold, M.E., Schall, T.J., Mentlein, R., The chemokine receptor CXCR7 is highly expressed in human glioma cells and mediates antiapoptotic effects. Cancer Res. 70:8 (2010), 3299–3308.
[49] Zhang, Y., Yang, C.Q., Gao, Y., Wang, C., Zhang, C.L., Zhou, X.H., Knockdown of CXCR7 inhibits proliferation and invasion of osteosarcoma cells through inhibition of the PI3K/Akt and beta-arrestin pathways. Oncol. Rep. 32:3 (2014), 965–972.
[50] Li, X.X., Zheng, H.T., Huang, L.Y., Shi, D.B., Peng, J.J., Liang, L., Cai, S.J., Silencing of CXCR7 gene represses growth and invasion and induces apoptosis in colorectal cancer through ERK and beta-arrestin pathways. Int. J. Oncol. 45:4 (2014), 1649–1657.
[51] Dai, X., Tan, Y., Cai, S., Xiong, X., Wang, L., Ye, Q., Yan, X., Ma, K., Cai, L., The role of CXCR7 on the adhesion, proliferation and angiogenesis of endothelial progenitor cells. J. Cell Mol. Med. 15:6 (2011), 1299–1309.
[52] Zheng, K., Li, H.Y., Su, X.L., Wang, X.Y., Tian, T., Li, F., Ren, G.S., Chemokine receptor CXCR7 regulates the invasion, angiogenesis and tumor growth of human hepatocellular carcinoma cells. J. Exp. Clin. Cancer Res., 29, 2010, 31.
[53] Proost, P., Verpoest, S., Van de Borne, K., Schutyser, E., Struyf, S., Put, W., Ronsse, I., Grillet, B., Opdenakker, G., Van Damme, J., Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-gamma in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. J. Leukoc. Biol. 75:5 (2004), 777–784.
[54] Loetscher, P., Pellegrino, A., Gong, J.H., Mattioli, I., Loetscher, M., Bardi, G., Baggiolini, M., Clark-Lewis, I., The ligands of CXC chemokine receptor 3, I-TAC, Mig, and IP10, are natural antagonists for CCR3. J. Biol. Chem. 276:5 (2001), 2986–2991.
[55] de Munnik, S.M., Kooistra, A.J., van Offenbeek, J., Nijmeijer, S., de Graaf, C., Smit, M.J., Leurs, R., Vischer, H.F., The viral G protein-coupled receptor ORF74 hijacks beta-arrestins for endocytic trafficking in response to human chemokines. PLoS ONE, 10(4), 2015, e0124486.
[56] Swaminath, G., Deupi, X., Lee, T.W., Zhu, W., Thian, F.S., Kobilka, T.S., Kobilka, B., Probing the beta2 adrenoceptor binding site with catechol reveals differences in binding and activation by agonists and partial agonists. J. Biol. Chem. 280:23 (2005), 22165–22171.
[57] Ghanouni, P., Gryczynski, Z., Steenhuis, J.J., Lee, T.W., Farrens, D.L., Lakowicz, J.R., Kobilka, B.K., Functionally different agonists induce distinct conformations in the G protein coupling domain of the beta 2 adrenergic receptor. J. Biol. Chem. 276:27 (2001), 24433–24436.
[58] Gosling, J., Dairaghi, D.J., Wang, Y., Hanley, M., Talbot, D., Miao, Z., Schall, T.J., Cutting edge: identification of a novel chemokine receptor that binds dendritic cell- and T cell-active chemokines including ELC, and TECK. J. Immunol. 164:6 (2000), 2851–2856.
[59] Savino, B., Caronni, N., Anselmo, A., Pasqualini, F., Borroni, E.M., Basso, G., Celesti, G., Laghi, L., Tourlaki, A., Boneschi, V., Brambilla, L., Nebuloni, M., Vago, G., Mantovani, A., Locati, M., Bonecchi, R., ERK-dependent downregulation of the atypical chemokine receptor D6 drives tumor aggressiveness in Kaposi sarcoma. Cancer Immunol. Res. 2:7 (2014), 679–689.
[60] Weber, K.S., Grone, H.J., Rocken, M., Klier, C., Gu, S., Wank, R., Proudfoot, A.E., Nelson, P.J., Weber, C., Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur. J. Immunol. 31:8 (2001), 2458–2466.
[61] Luttichau, H.R., Stine, J., Boesen, T.P., Johnsen, A.H., Chantry, D., Gerstoft, J., Schwartz, T.W., A highly selective CC chemokine receptor (CCR)8 antagonist encoded by the poxvirus molluscum contagiosum. J. Exp. Med. 191:1 (2000), 171–180.