Abstract :
[en] In this paper, the optimal operation of a stationary sub-critical 11kWel organic Rankine cycle (ORC) unit for waste heat recovery (WHR) applications is investigated, both in terms of energy
production and safety conditions. Simulation results of a validated dynamic model of the ORC power unit are used to derive a correlation for the evaporating temperature, which maximizes the power generation for a range of operating conditions. This idea is further extended using a perturbation-based extremum seeking (ES) algorithm to identify online the optimal evaporating temperature. Regarding safety conditions, we propose the use of the extended prediction self-adaptive control (EPSAC) approach to constrained model predictive control (MPC). Since it uses input/output models for prediction, it avoids the need for state estimators, making it a suitable tool for industrial applications. The performance of the proposed control strategy is compared to PID-like schemes. Results show that EPSAC-MPC is a more effective control strategy, as it allows a safer and more efficient operation of the ORC unit, as it can handle constraints in a natural way, operating close to the boundary conditions where power generation is maximized.
Scopus citations®
without self-citations
22