[en] Surface properties of a nonhydrophobic fraction of proteose-peptone (NHFPP) and a hydrophobic fraction of proteose-peptone (HFPP), obtained by hydrophobic-interaction chromatography, were investigated. Adsorption of NHFPP and HFPP on the surface activity of total proteose-peptone (TPP) followed a competitive mechanism, especially during the penetration phase and molecular rearrangements. Compression of mixed monolayers was used to study the miscibility of NHFPP and HFPP within TPP films. When NHFPP was mixed with HFPP, in a TPP film, both fractions were immiscible at the beginning of adsorption; they only became miscible when the polypeptide chains had moved from the surface to the aqueous phase, thus allowing a better organisation of proteins. The equation of excess free energy of compression was used to determine the interactions of NHFPP-HFPP within the TPP film through the mixed monolayer (thermodynamic properties); interactions between NHFPP and HFPP appeared less important than those that occurred between molecules within each fraction.
Disciplines :
Food science
Author, co-author :
Karamoko, Gaoussou
Renaville, Robert ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Blecker, Christophe ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Science des alim. et formul.
Language :
English
Title :
Interfacial activities of milk total proteose-peptone: contribution and miscibility of nonhydrophobic and hydrophobic fractions
Anand K., Damodaran S. Dynamics of exchange between αS1-casein and β-casein during adsorption at air-water interface. Journal of Agricultural and Food Chemistry 1996, 44:1022-1028.
Andrews A.T. Proteinases in normal bovine milk and their action on caseins. Journal of Dairy Research 1983, 50:45-55.
Balla A. Etude des proprieties interfaciales du gluten et des proteins du sorgho en vue de la panification 1999, (Thèse de doctorat), Faculté Universitaire des Sciences Agronomiques de, Gembloux, Belgique.
Benjamins J., Cagna A., Lucassen-Reynders E.H. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins. Colloids and Surface A: Physicochemical and Engineering Aspects 1996, 114:245-254.
Blecker C. Etude de la modification des propriétés fonctionnelles du lactosérum par hydrolyse enzymatique de sa matière grasse 1998, (Thèse de doctorat), Faculté Universitaire des Sciences Agronomiques de, Gembloux, Belgique.
Boyd J.V., Mitchell J.R., Irons L., Musselwhite P.R., Sherman P. The mechanical properties of milk proteins films spread at the air-water interface. Journal of Colloid Interface Science 1973, 45:478-486.
Campagna S., Mathot A.G., Fleury Y., Girardet J.M., Gaillard J.L. Antibacterial activity of lactophoricin, a synthetic 23-residues peptide derived from the sequence of bovine milk component-3 of proteose-peptone. Journal of Dairy Science 2004, 87:1621-1626.
Campagna S., Vithoux B., Humbert G., Girardet J.M., Linden G., Haertle T., et al. Conformational studies of a synthetic peptide from the putative lipid-binding domain of Bovine Milk component PP3. Journal of Dairy Science 1998, 81:3139-3148.
Casper J.L., Wendorff W.L., Thomas D.L. Functional properties of whey protein concentrates from caprine and ovine specialty cheese wheys. Journal of Dairy Science 1999, 82:265-271.
Dagorn-Scaviner C., Gueguen J., Lefebvre J. A comparison of interfacial behaviours of pea (Pisum sativum L.) legumin and vicilin at air-water interface. Die Nahrung 1986, 30:337-347.
Damodaran S. Structure-function relationship of food proteins. Protein and functionality in food systems 1994, 1-38. Marcel Decker, Inc, New York, NY, USA. N.S. Hettiarachchy, G.R. Ziegler (Eds.).
Damodaran S., Sengupta T. Dynamics of competitive adsorption of αs-casein and β-casein at planar triolein-water interface: evidence for incompatibility of mixing in the interfacial film. Journal of Agricultural and Food Chemistry 2003, 51:1658-1665.
Eigel W.N., Butler J.E., Ernstrom C.A., Farell H.M., Harwalkar V.R., Jenness R., et al. Nomenclature of proteins of cow's milk: fifth revision. Journal of Dairy Science 1984, 67:1599-1631.
Es-Sounni A. Interaction lipide-lipide et lipide -protéine dans le modèle de monocouche à l'interface air-eau 1993, (Thèse de doctorat), Université du Québec à Trois-Rivières, Canada.
Gaines G.L. Insoluble monolayers at liquid-gas interface. Interscience monographs on physical chemistry 1966, 136-207. Wiley & Sons, Inc, New York, NY, USA. I. Prigogine (Ed.).
Girardet J.M. Le composant 3 des protéose-peptones du lait bovin: Obtention, Origine, Etude de sa partie glycannique, et son rôle dans la lipolyse 1992, (Thèse de doctorat), Université de Nancy 1, France.
Girardet J.M., Debomy L., Courthaudon J.L., Miclo L., Humbert G., Gaillard J.L. Viscoelastic properties of oil-water interfaces covered by bovine β-casein tryptic peptides. Journal of Dairy Science 2000, 83:2410-2421.
Girardet J.M., Linden G. PP3 component of bovine milk: a phosphorylated whey glycoprotein. Journal of Dairy Research 1996, 63:333-350.
Graham D.E., Phillips M.C. Proteins at the liquid interface: I. kinetics of adsorption and surface denaturation. Journal of Colloid and Interface Science 1979, 70:403-414.
Inagaki M., Nagai S., Yabe T., Nagaoka S., Minamoto N., Takahashi T., et al. The bovine lactophorin C-terminale fragment and PAS6/7 were both potent in the inhibition of human rotavirus replication in cultured epithelial cells and the prevention of experimental gastroenteritis. Bioscience, Biotechnology and Biochemistry 2010, 74:1386-1390.
Innocente N., Biasutti M., Blecker C. HPLC profile and dynamic properties of the proteose-peptone fraction from bovine milk and whey protein concentrate. International Dairy Journal 2011, 21:222-228.
Innocente N., Corradini C., Blecker C., Paquot M. Dynamic surface properties of the proteose-peptone fraction of bovine milk. Journal of Dairy Science 1998, 81:1833-1839.
Innocente N., Corradini C., Blecker C., Paquot M. Emulsifying properties of the total fraction and the hydrophobic fraction of bovine milk proteose-peptone. International Dairy Journal 1998, 8:981-985.
Innocente N., Marchesini G., Biasutti M. Feasibility of the SPME method for the determination of the aroma retention. Food Chemistry 2011, 124:1249-1257.
Kanno C. Purification and separation of multiple forms of lactophorin from bovine milk whey and their immunological and electrophoresis properties. Journal of Dairy Science 1989, 79:883-891.
Karamoko G., Anihouvi P., Blecker C. The development of knowledge regarding the characteristics of the proteose-peptone fractions of milk : techno-functional and biological properties. A review. Biotechnologie, Agronomie, Société et Environnement 2013, 17:373-382.
Karamoko G., Danthine S., Olive G., Blecker C. Interfacial and foaming properties of two types of total proteose-peptone fractions. Food and Bioprocess Technology 2013, 6:1944-1952.
Kinsella J.E., Phillips L.G. Structure function relationships in food proteins: film and foaming behaviour. Food protein: Structure and functional relationships 1989, 52-77. American Oil Chemist Society, Champaign. IL, USA. J.E. Kinsella, W.G. Soucie (Eds.).
Mackie A.R., Gunning A.P., Wilde P.J., Morris V.J. Orogenic displacement of protein from the air-water interface by competition adsorption. Journal of Colloid and Interface Science 1998, 210:157-166.
Mita T. Lipid-protein interaction in mixed monolayers from phospholipids and proteins. Bulletin of the Chemical Society of Japan 1989, 62:3114-3121.
Pâquet D., Nejjar Y., Linden G. Study of a hydrophobic protein fraction isolated from milk proteose-peptone. Journal of Dairy Science 1988, 71:1464-1471.
Rodríguez Patino J.M., De la Fuente Feria J. Destabilization of monoglyceride monolayers at the air-water interfaces: structure and stability relationships. Food macromolecules and colloids 1995, 109-113. The Royal Society of Chemistry, Cambridge, UK. E. Dicknson, D. Lorient (Eds.).
Seoane R., Miñones J., Conde O., Casas M., Iribarnegaray E. Molecular organisation of amphotericin B at the air-water interface in the presence of sterols: a monolayer study. Biochimica et Biophysica Acta, Biomembranes 1998, 1375:73-83.
Sheng-hua H., Ying M., Jia-Qi W., Qi-Ming L., Shanhu T., Hai-Mei L. Effects of proteose-peptone fractions from yak milk on lipoprotein lipase lipolysis. International Journal of Dairy Technology 2012, 65:32-37.
Sørensen E.S., Petersen T.E. Purification and characterization of three proteins isolated from the proteose-peptone fraction of bovine milk. Journal of Dairy Research 1993, 60:189-197.
Sørensen E.S., Rasmussen L.K., Moller L., Petersen T.E. The localization and multimeric nature of component PP3 in bovine milk: purification and characterization of PP3 from caprine and ovine milks. Journal of Dairy Science 1997, 80:3176-3181.
SPSS SPSS for windows: Advanced statistics, release 11.0 2001, SPSS Inc, Chicago, IL, USA.
Tornberg E. The interfacial behaviour of three food proteins studied by the drop volume technique. Journal of the Science of Food and Agriculture 1978, 29:762-776.
Vanderghem C., Danthine S., Blecker C., Deroanne C. Effect of proteose-peptone addition on some physcio-chemical characteristics of recombined dairy creams. International Dairy Journal 2007, 17:889-895.
Williams A., Prins A. Comparison of the dilational behaviour of adsorbed milk proteins at the air-water and oil-water interfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects 1996, 114:267-275.
Wüstneck R., Krägel J., Miller R., Fainerman V.B., Wilde P.J., Sarker D.K., et al. Dynamic surface tension and adsorption properties of β-casein and β-lactoglobulin. Food Hydrocolloids 1996, 10:395-405.