[en] Over recent decades, spreading environmental concern entailed the expansion of green chemistry analytical tools. Vibrational spectroscopy, belonging to this class of analytical tool, is particularly interesting taking into account its numerous advantages such as fast data acquisition and no sample preparation. In this context, Near-Infrared, Raman and mainly Surface-Enhanced Raman Spectroscopy (SERS) have thus gained interest in many fields including bioanalysis. The two former techniques only ensure the analysis of concentrated compounds in simple matrices, whereas the emergence of SERS improved the performances of vibrational spectroscopy to very sensitive and selective analyses. Complex SERS substrates were also developed enabling biomarker measurements, paving the way for SERS immunoassays. Therefore, in this paper, the strengths and weaknesses of these techniques will be highlighted with a focus on recent progress.
Research Center/Unit :
Centre Interfacultaire de Recherche du Médicament - CIRM
Disciplines :
Pharmacy, pharmacology & toxicology
Author, co-author :
Dumont, Elodie ; Université de Liège > Département de pharmacie > Chimie analytique
De Bleye, Charlotte ; Université de Liège > Département de pharmacie > Chimie analytique
Sacre, Pierre-Yves ; Université de Liège > Département de pharmacie > Chimie analytique
Burns DA, Ciurczak EW. Basic principles of near-infrared spectroscopy. In: Handbook of Near-Infrared Analysis (3rd Edition). Burns DA, Ciurczak EW (Eds). CRC Press, Boca Raton, FL, USA, 7-19 (2008).
Sasic S, Ozaki Y. Spectroscopic theory for chemical imaging. In: Raman, Infrared and Near-Infrared Chemical Imaging. Sasic S, Ozaki Y (Eds). John Wiley & Sons, Hoboken, NJ, USA, 1-20 (2010).
McCreery R. Introduction and scope. In: Raman Spectroscopy for Chemical Analysis. Winefordner JD (Ed.). John Wiley & Sons, Danvers, MA, USA, 1-14 (2000).
Schlücker S. Basic electromagnetic theory of SERS. In: Surface Enhanced Raman Spectroscopy. Schlücker S (Ed.). Wiley-VCH Verlag & Co, Weinheim, Germany, 1-37 (2011).
Fleischmann M, Hendra PJ, McQuillan AJ. Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26(2), 163-166 (1974).
Lee PC, Meisel D. Adsorption and surface-enhanced Raman of dyes on silver and gold sols. J. Phys. Chem. 86(17), 3391-3395 (1982).
Creighton JA, Blatchford CG, Albrecht MG. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 75, 790-798 (1979).
Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55-75 (1951).
Le Ru E, Etchegoin P. Recent developments. In: Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Le Ru E, Etchegoin P (Eds). Elsevier, Amsterdam, The Netherlands, 415-464 (2009).
Wang AX, Kong X. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering. Materials 8(6), 3024-3052 (2015).
Mohamed AI, Ahmed OAA, Amin S, Elkadi OA, Kassem MA. In-vivo evaluation of clindamycin release from glyceryl monooleate-alginate microspheres by NIR spectroscopy. Int. J. Pharm. 494(1), 127-135 (2015).
Kasemsumran S, Du YP, Murayama K, Huehne M, Ozaki Y. Near-infrared spectroscopic determination of human serum albumin, γ-globulin, and glucose in a control serum solution with searching combination moving window partial least squares. Anal. Chim. Acta 512(2), 223-230 (2004).
Burns DA, Ciurczak EW. Fourier transform spectrophotometers in the Near-Infrared. In: Handbook of Near-Infrared Analysis (3rd Edition). Burns DA, Ciurczak EW (Eds). CRC Press, Boca Raton, FL, USA, 79-91 (2008).
Ewing GW. Vibrational spectroscopy: instrumentation for infrared and Raman spectroscopy. In: Analytical Instrumentation Handbook (2nd Edition). Ewing GW (Ed.). Marcel Dekker, New York, NY, USA, 393-555 (1997).
Burns DA, Ciurczak EW. Commercial NIR instrumentation. In: Handbook of Near-Infrared Analysis (3rd Edition). Burns DA, Ciurczak EW (Eds). CRC Press, Boca Raton, FL, USA, 189-205 (2008).
Fudaba Y, Oshita A, Tashiro H, Ohdan H. Intrahepatic triglyceride measurement and estimation of viability in rat fatty livers by near-infrared spectroscopy. Hepatol. Res. 45(4), 470-479 (2015).
Li QB, Li LN, Zhang GJ. A nonlinear model for calibration of blood glucose noninvasive measurement using near infrared spectroscopy. Infrared Phys. Technol. 53(5), 410-417 (2010).
Ben Mohammadi L, Klotzbuecher T, Sigloch S et al. In vivo evaluation of a chip based near infrared sensor for continuous glucose monitoring. Biosens. Bioelectron. 53, 99-104 (2014).
Jiang J, Zhang K, Qin J et al. Quantitative assessment of the effect of cholesterol on blood glucose measurement using near infrared spectroscopy and a method for error reduction. Lasers Surg. Med. 47(1), 88-97 (2015).
Goodarzi M, Sharma S, Ramon H, Saeys W. Multivariate calibration of NIR spectroscopic sensors for continuous glucose monitoring. Trends Analyt. Chem. 67, 147-158 (2015).
Jin JW, Chen ZP, Song J, Xia TH, Yu RQ. Determination of glucose in plasma by dry film-based near infrared spectroscopy: correcting the thickness variations of dry films without applying an internal standard. Chemometr. Intell. Lab. Syst. 135, 63-69 (2014).
Zhou YP, Jiang JH, Wu HL, Shen GL, Yu RQ, Ozaki Y. Dry film method with ytterbium as the internal standard for near infrared spectroscopic plasma glucose assay coupled with boosting support vector regression. J. Chemometrics 20(1-2), 13-21 (2006).
Al-Mbaideen A, Benaissa M. Determination of glucose concentration from NIR spectra using independent component regression. Chemometr. Intell. Lab. Syst. 105(1), 131-135 (2011).
Goodarzi M, Saeys W. Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum. Talanta 146, 155-165 (2016).
Neves ACDO, de Araújo AA, Silva BL, Valderrama P, Março PH, de Lima KMG. Near infrared spectroscopy and multivariate calibration for simultaneous determination of glucose, triglycerides and high-density lipoprotein in animal plasma. J. Pharm. Biomed. Anal. 66, 252-257 (2012).
Pezzaniti JL, Jeng TW, McDowell L, Oosta GM. Preliminary investigation of near-infrared spectroscopic measurements of urea, creatinine, glucose, protein, and ketone in urine. Clin. Biochem. 34(3), 239-246 (2001).
Han Y, Chen J, Pan T, Liu G. Determination of glycated hemoglobin using near-infrared spectroscopy combined with equidistant combination partial least squares. Chemometr. Intell. Lab. Syst. 145, 84-92 (2015).
Zhou Y, Zheng C, Cao H, Li X, Sha J. Measurement of hemoglobin in whole blood using a partial least squares regression model with selected second derivative near infrared transmission spectral signals. Biochem. Biophys. Res. Commun. 420(1), 205-209 (2012).
Sakudo A, Kato YH, Kuratsune H, Ikuta K. Non-invasive prediction of hematocrit levels by portable visible and near-infrared spectrophotometer. Clin. Chim. Acta 408(1-2), 123-127 (2009).
da Costa Filho PA, Poppi RJ. Determination of triglycerides in human plasma using near-infrared spectroscopy and multivariate calibration methods. Anal. Chim. Acta 446(1-2), 39-47 (2001).
Liu WF, Liu GL, Wang XF, Bao YF, Li G, Wang HQ. Non-invasive measurement study of human blood alcohol concentration based on NIR dynamic spectrum. 2011 Int. Conf. Image Anal. Signal Process. 6109091, 492-495 (2011).
Ajayakumar PV, Chanda D, Pal A, Singh MP, Samad A. FT-NIR spectroscopy for rapid and simple determination of nimesulide in rabbit plasma for pharmacokinetic analysis. J. Pharm. Biomed. Anal. 58(1), 157-162 (2012).
Burns DA, Ciurczak EW. Data analysis: Calibration of NIR instruments by PLS regression. In: Handbook of Near-Infrared Analysis (3rd Edition). Burns DA, Ciurczak EW (Eds). CRC Press, Boca Raton, FL, USA, 189-205 (2008).
Raman CV, Krishnan KS. A new type of secondary radiation. Nature 121(3048), 501-502 (1928).
Sasic S. Introduction to Raman spectroscopy. In: Pharmaceutical Applications of Raman Spectroscopy. Ekins S (Ed.). John Wiley & Sons, Hoboken, NJ, USA, 1-7 (2008).
Dieing T, Hollricher O, Toporski J. Introduction to the fundamentals of Raman spectroscopy. In: Confocal Raman Microscopy. Dieing T, Hollricher O, Toporski J (Eds). Springer, Berlin, Germany, 21-42 (2010).
McCreery R. Instrumentation overview and spectrometer performance. In: Raman Spectroscopy For Chemical Analysis. Winefordner JD (Ed.). John Wiley & Sons, Danvers, MA, USA, 73-94 (2000).
Matousek P, Morris MD. Lasers, spectrographs, and detectors. In: Emerging Raman Applications And Techniques In Biomedical And Pharmaceutical Fields. Matousek P, Morris MD (Eds). Springer, Heidelberg, Germany, 1-24 (2010).
Barman I, Kong CR, Dingari NC, Dasari RR, Feld MS. Development of robust calibration models using support vector machines for spectroscopic monitoring of blood glucose. Anal. Chem. 82, 9719-9726 (2010).
Ermakov IV, Ermakova MR, Bernstein PS, Chan GM, Gellermann W. Resonance Raman based skin carotenoid measurements in newborns and infants. J. Biophotonics 6(10), 793-802 (2013).
Kong CR, Barman I, Dingari NC et al. A novel non-imaging optics based Raman spectroscopy device for transdermal blood analyte measurement. AIP Adv. 1(3), 32175 (2011).
Qi D, Berger AJ. Chemical concentration measurement in blood serum and urine samples using liquid-core optical fiber Raman spectroscopy. Appl. Opt. 46(10), 1726-1734 (2007).
Chuchuen O, Henderson MH, Sykes C, Kim MS, Kashuba ADM, Katz DF. Quantitative analysis of microbicide concentrations in fluids, gels and tissues using confocal Raman spectroscopy. PLoS ONE 8(12), 1-23 (2013).
Shao J, Lin M, Li Y et al. In vivo blood glucose quantification using Raman spectroscopy. PLoS ONE 7(10), 1-6 (2012).
Sacré PY, De Bleye C, Chavez PF, Netchacovitch L, Hubert Ph, Ziemons E. Data processing of vibrational chemical imaging for pharmaceutical applications. J. Pharm. Biomed. Anal. 101, 123-140 (2014).
Poon KWC, Lyng FM, Knief P et al. Quantitative reagent-free detection of fibrinogen levels in human blood plasma using Raman spectroscopy. Analyst 137(8), 1807-1814 (2012).
Filik J, Stone N. Analysis of human tear fluid by Raman spectroscopy. Anal. Chim. Acta 616(2), 177-184 (2008).
Chiu Y, Huang YY, Chen PA, Lu SH, Chiu AW, Chiang HK. Quantitative and multicomponent analysis of prevalent urinary calculi using Raman spectroscopy. J. Raman Spectrosc. 43(8), 992-997 (2012).
Franzen L, Anderski J, Windbergs M. Quantitative detection of caffeine in human skin by confocal Raman spectroscopy - a systematic in vitro validation study. Eur. J. Pharm. Biopharm. 95, 110-116 (2015).
Okotrub KA, Surovtsev NV, Semeshin VF, Omelyanchuk LV. Raman spectroscopy for DNA quantification in cell nucleus. Cytometry Part A 87(1), 68-73 (2015).
Lu M, Zhao L, Wang Y et al. Measurement of the methemoglobin concentration using Raman spectroscopy. Artif. Cells Nanomed. Biotechnol. 42(1), 63-69 (2014).
Saade J, Silva JDN, de Farias PMA et al. Glicemical analysis of human blood serum using FT-Raman: a new approach. Photomed. Laser Surg. 30(7), 388-392 (2012).
Wrobel MS, Gnyba M, Urniaz R, Myllylä TS, Jedrzejwska-Szczerska M. Detection of propofol concentrations in blood by Raman spectroscopy. Progr. Biomed. Opt. Imaging Proc. SPIE 9537, doi: 10.1117/12.2182963 (2015).
Monfared AMT, Tiwari VS, Tripathi MM, Anis H. Raman spectroscopy for clinical-level detection of heparin in serum by partial least-squares analysis. J. Biomed. Opt. 18(2), 27010 (2013).
Nakagawa N, Matsumoto M, Sakai S. In vivo measurement of the water content in the dermis by confocal Raman spectroscopy. Skin Res. Technol. 16(2), 137-141 (2010).
Huang Z, Chen X, Li Y et al. Quantitative determination of citric acid in seminal plasma by using Raman spectroscopy. Appl. Spectrosc. 67(7), 757-760 (2013).
Galvan I, Jorge A, Ito K, Tabuchi K, Solano F, Wakamatsu K. Raman spectroscopy as a non-invasive technique for the quantification of melanins in feathers and hairs. Pigment Cell Melanoma Res. 26(6), 917-923 (2013).
Jeanmaire DL, Van Duyne RP. Surface Raman spectroelectrochemistry Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. J. Electroanal. Chem. 84(1), 1-20 (1977).
Albrecht MG, Creighton JA. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99(15), 5215-5217 (1977).
Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Surface-enhanced Raman scattering and biophysics. J. Phys. Condens. Matter 14(18), 597-624 (2002).
Wang Y, Yan B, Chen L. SERS tags: novel optical nanoprobes for bioanalysis. Chem. Rev. 113(3), 1391-1428 (2013).
Lin ZH, Chen IC, Chang HT. Detection of human serum albumin through surface-enhanced Raman scattering using gold "pearl necklace" nanomaterials as substrates. Chem. Commun. 47(25), 7116-7118 (2011).
Li M, Du Y, Zhao F, Zeng J, Mohan C, Shih WC. Reagent-and separation-free measurements of urine creatinine concentration using stamping surface enhanced Raman scattering (S-SERS). Biomed. Opt. Express 6(3), 849-858 (2015).
Wang CW, Chang HT. Sensitive detection of platelet-derived growth factor through surface-enhanced Raman scattering. Anal. Chem. 86(15), 7606-7611 (2014).
Le Ru E, Etchegoin P. Metallic colloids and other SERS substrates. In: Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Le Ru E, Etchegoin P (Eds). Elsevier, Amsterdam, The Netherlands, 367-413 (2009).
Bonifacio A, Cervo S, Sergo V. Label-free surface-enhanced Raman spectroscopy of biofluids: fundamental aspects and diagnostic applications. Anal. Bioanal. Chem. 407(27), 8265-8277 (2015).
Bantz KC, Meyer AF, Wittenberg NJ et al. Recent progress in SERS biosensing. Phys. Chem. Chem. Phys. 13(24), 11551-11567 (2011).
Hsu PY, Chiang HK. Surface-enhanced Raman spectroscopy for quantitative measurement of lactic acid at physiological concentration in human serum. J. Raman Spectrosc. 41(12), 1610-1614 (2010).
Huang R, Han S, Li X. Detection of tobacco-related biomarkers in urine samples by surface-enhanced Raman spectroscopy coupled with thin-layer chromatography. Anal. Bioanal. Chem. 405(21), 6815-6822 (2013).
Tadele Alula M, Yang J. Photochemical decoration of magnetic composites with silver nanostructures for determination of creatinine in urine by surface-enhanced Raman spectroscopy. Talanta 130, 55-62 (2014).
Yang T, Guo X, Wu Y et al. Facile and label-free detection of lung cancer biomarker in urine by magnetically assisted surface-enhanced Raman scattering. ACS Appl. Mater. Inter. 6(23), 20985-20993 (2014).
Han Z, Liu H, Wang B, Weng S, Yang L, Liu J. Three-dimensional surface-enhanced Raman scattering hotspots in spherical colloidal superstructure for identification and detection of drugs in human urine. Anal. Chem. 87(9), 4821-4828 (2015).
Zhai F, Huang Y, Li C, Wang X, Lai K. Rapid determination of ractopamine in swine urine using surface-enhanced Raman spectroscopy. J. Agric. Food Chem. 59(18), 10023-10027 (2011).
Farquharson S, Shende C, Sengupta A, Huang H, Inscore F. Rapid detection and identification of overdose drugs in saliva by surface-enhanced Raman scattering using fused gold colloids. Pharmaceutics 3(3), 425-439 (2011).
Mamián-López MB, Poppi RJ. Standard addition method applied to the urinary quantification of nicotine in the presence of cotinine and anabasine using surface enhanced Raman spectroscopy and multivariate curve resolution. Anal. Chim. Acta 760, 53-59 (2013).
Choi S, Moon SW, Shin JH, Park HK, Jin KH. Label-free biochemical analytic method for the early detection of adenoviral conjunctivitis using human tear biofluids. Anal. Chem. 86(22), 11093-11099 (2014).
Mamián-López MB, Poppi RJ. Quantification of moxifloxacin in urine using surface-enhanced Raman spectroscopy (SERS) and multivariate curve resolution on a nanostructured gold surface. Anal. Bioanal. Chem. 405(24), 7671-7677 (2013).
Dong R, Weng S, Yang L, Liu J. Detection and direct readout of drugs in human urine using dynamic surface-enhanced Raman spectroscopy and support vector machines. Anal. Chem. 87(5), 2937-2944 (2015).
Andreou C, Hoonejani MR, Barmi MR, Moskovits M, Meinhart CD. Rapid detection of drugs of abuse in saliva using surface enhanced Raman spectroscopy and microfluidics. ACS Nano 7(8), 7157-7164 (2013).
Yuen C, Zheng W, Huang Z. Low-level detection of anti-cancer drug in blood plasma using microwave-treated gold-polystyrene beads as surface-enhanced Raman scattering substrates. Biosens. Bioelectron. 26(2), 580-584 (2010).
Long SY, Chen ZP, Chen Y, Yu RQ. Quantitative detection of captopril in tablet and blood plasma samples by the combination of surface-enhanced Raman spectroscopy with multiplicative effects model. J. Raman Spectrosc. 46(7), 605-609 (2015).
Li YT, Li DW, Cao Y, Long YT. Label-free in-situ monitoring of protein tyrosine nitration in blood by surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 69, 1-7 (2015).
Stevenson R, McAughtrie S, Senior L et al. Analysis of intracellular enzyme activity by surface enhanced Raman scattering. Analyst 138(21), 6331-6336 (2013).
Perumal J, Balasundaram G, Mahyuddin AP, Choolani M, Olivo M. SERS-based quantitative detection of ovarian cancer prognostic factor haptoglobin. Int. J. Nanomedicine 10, 1831-1840 (2015).
Al-Ogaidi I, Gou H, Al-kazaz AKA et al. A gold@silica core-shell nanoparticle-based surface-enhanced Raman scattering biosensor for label-free glucose detection. Anal. Chim. Acta 811, 76-80 (2014).
Rath S, Sahu A, Gota V, Martinez-Torres PG, Pichardo-Molina JL, Murali Krishna C. Raman spectroscopy for detection of imatinib in plasma: a proof of concept. J. Innov. Opt. Health Sci. 8(5), 1550019-1-1550019-11 (2015).
El-Said WA, Choi JW. In-situ detection of neurotransmitter release from PC12 cells using surface enhanced Raman spectroscopy. Biotechnol. Bioprocess Eng. 19(6), 1069-1076 (2014).
Kim WS, Shin JH, Park HK, Choi S. A low-cost, monometallic, surface-enhanced Raman scattering-functionalized paper platform for spot-on bioassays. Sensors Actuat. B Chem. 222, 1112-1118 (2015).
Choi S, Park HK, Min GE, Kim YH. Biochemical investigations of human Papillomavirus-infected cervical fluids. Microsc. Res. Tech. 78(3), 200-206 (2015).
Vitol EA, Brailoiu E, Orynbayeva Z, Dun NJ, Friedman G, Gogotsi Y. Surface-enhanced Raman spectroscopy as a tool for detecting Ca2+ mobilizing second messengers in cell extracts. Anal. Chem. 82(16), 6770-6774 (2010).
Liu S, Huang J, Chen Z et al. Raman spectroscopy measurement of levofloxacin lactate in blood using an optical fiber nano-probe. J. Raman Spetrosc. 46(2), 197-201 (2015).
Schlücker S. SERS microscopy: nanoparticle probes and biomedical applications. In: Surface Enhanced Raman Spectroscopy. Schlücker S (Ed,). Wiley-VCH Verlag & Co, Weinheim, Germany, 263-283 (2011).
Kong KV, Ho CJH, Gong T, Lau WKO, Olivo M. Sensitive SERS glucose sensing in biological media using alkyne functionalized boronic acid on planar substrates. Biosens. Bioelectron. 56, 186-191 (2014).
Kong KV, Lam Z, Lau WKO, Leong WK, Olivo M. A transition metal carbonyl probe for use in a highly specific and sensitive SERS-based assay for glucose. J. Am. Chem. Soc. 135(48), 18028-18031 (2013).
Gupta VK, Atar N, Yola ML et al. A novel glucose biosensor platform based on Ag@AuNPs modified graphene oxide nanocomposite and SERS application. J. Colloid Interface Sci. 406, 231-237 (2013).
Torul H, Ciftçi H, Cetin D, Suludere Z, Boyaci IH, Tamer U. Paper membrane-based SERS platform for the determination of glucose in blood samples. Anal. Bioanal. Chem. 407, 8243-8251 (2015).
Sun F, Ella-Menye JR, Galvan DD et al. Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9(3), 2668-2676 (2015).
Wu J, Liang D, Jin Q et al. Bioorthogonal SERS nanoprobes for multiplex spectroscopic detection, tumor cell targeting, and tissue imaging. Chem. Eur. J. 21(37), 12914-12918 (2015).
Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP. Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Anal. Chem. 82(20), 8382-8385 (2010).
Ma K, Yuen JM, Shah NC, Walsh JT, Glucksberg MR, Van Duyne RP. In vivo transcutaneous glucose sensing using surface-enhanced spatially offset Raman spectroscopy: multiple rats, improved hypoglycemic accuracy, low incident power, and continuous monitoring for greater than 17 days. Anal. Chem. 83(23), 9146-9152 (2011).
Qu LL, Li DW, Qin LX, Mu J, Fossey JS, Long YT. Selective and sensitive detection of intracellular O2•- using Au NPs/Cytochrome c as SERS nanosensors. Anal. Chem. 85(20), 9549-9555 (2013).
Cao Y, Li DW, Zhao LJ, Liu XY, Cao XM, Long YT. Highly selective detection of carbon monoxide in living cells by palladacycle carbonylation-based surface enhanced Raman spectroscopy nanosensors. Anal. Chem. 87(19), 9696-9701 (2015).
Qu LL, Liu YY, He SH, Chen JQ, Liang Y, Li HT. Highly selective and sensitive surface enhanced Raman scattering nanosensors for detection of hydrogen peroxide in living cells. Biosens. Bioelectron. 77, 292-298 (2016).
Whyte GF, Vilar R, Woscholski R. Molecular recognition with boronic acids-applications in chemical biology. J. Chem. Biol. 6(4), 161-174 (2013).
Wang Y, Tang LJ, Jiang JH. Surface-enhanced Raman spectroscopy-based, homogeneous, multiplexed immunoassay with antibody-fragments-decorated gold nanoparticles. Anal. Chem. 85(19), 9213-9220 (2013).
Wang G, Lipert RJ, Jain M et al. Detection of the potential pancreatic cancer marker MUC4 in serum using surface-enhanced Raman scattering. Anal. chem. 83(7), 2554-2561 (2011).
Samanta A, Maiti KK, Soh KS et al. Ultrasensitive near-infrared Raman reporters for SERS-based in vivo cancer detection. Angew. Chem. Int. Ed. Engl. 50(27), 6089-6092 (2011).
Yuan Q, Lu D, Zhang X, Chen Z, Tan W. Aptamer-conjugated optical nanomaterials for bioanalysis. Trends Analyt. Chem. 39, 72-86 (2012).
Sharma R, Ragavan KV, Thakur MS, Raghavarao KSMS. Recent advances in nanoparticle based aptasensors for food contaminants. Biosens. Bioelectron. 74, 612-627 (2015).
Wang Y, Lee K, Irudayaraj J. SERS aptasensor from nanorod-nanoparticle junction for protein detection. Chem. Commun. 46(4), 613-615 (2010).
Yoon J, Cho N, Ko J, Kim K, Lee S, Choo J. Highly sensitive detection of thrombin using SERS-based magnetic aptasensors. Biosens. Bioelectron. 47, 62-67 (2013).
Chen X, Liu H, Zhou X, Hu J. Core-shell nanostructures for ultrasensitive detection of α-thrombin. Nanoscale 2(12), 2841-2846 (2010).
Sivanesan A, Izake EL, Agoston R, Ayoko GA, Sillence M. Reproducible and label-free biosensor for the selective extraction and rapid detection of proteins in biological fluids. J. Nanobiotechnol. 13(1), 43-48 (2015).
Demeritte T, Viraka Nellore BP, Kanchanapally R et al. Hybrid graphene oxide based plasmonic-magnetic multifunctional nanoplatform for selective separation and label-free identification of Alzheimer's disease biomarkers. ACS Appl. Mater. Inter. 7(24), 13693-13700 (2015).
Yang AQ, Wang D, Wang X et al. Rational design of Au nanorods assemblies for highly sensitive and selective SERS detection of prostate specific antigen. RCS Adv. 5(48), 38354-38360 (2015).
Chon H, Wang R, Lee S et al. Clinical validation of surface-enhanced Raman scattering-based immunoassays in the early diagnosis of rheumatoid arthritis. Anal. Bioanal. Chem. 407, 8353-8362 (2015).
Dinish US, Fu CY, Soh KS, Bhuvaneswari R, Kumar A, Olivo M. Highly sensitive SERS detection of cancer proteins in low sample volume using hollow core photonic crystal fiber. Biosens. Bioelectron. 33(1), 293-298 (2012).
Maiti KK, Samanta A, Vendrell M, Soh KS, Olivo M, Chang YT. Multiplex cancer cell detection by SERS nanotags with cyanine and triphenylmethine Raman reporters. Chem. Commun. 47(12), 3514-3516 (2011).
Maiti KK, Dinish US, Fu CY et al. Development of biocompatible SERS nanotag with increased stability by chemisorption of reporter molecule for in vivo cancer detection. Biosens. Bioelectron. 26(2), 398-403 (2010).
Wang X, Qian X, Beitler JJ et al. Detection of circulating tumor cells in human peripheral blood using surface-enhanced Raman scattering nanoparticles. Cancer Res. 71(5), 1526-1532 (2011).
Chon H, Lee S, Yoon SY, Chang SI, Lim DW, Choo J. Simultaneous immunoassay for the detection of two lung cancer markers using functionalized SERS nanoprobes. Chem. Commun. 47(46), 12515-12517 (2011).
Gao R, Ko J, Chab K et al. Fast and sensitive detection of an anthrax biomarker using SERS-based solenoid microfluidic sensor. Biosens. Bioelectron. 72, 230-236 (2015).
Chon H, Lee S, Yoon SY, Lee EK, Chang SI, Choo J. SERS-based competitive immunoassay of troponin I and CK-MB markers for early diagnosis of acute myocardial infarction. Chem. Commun. 50(9), 1058-1060 (2014).
Kaminska A, Witkowska E, Winkler K, Dziecielewski I, Weyher JL, Waluk J. Detection of Hepatitis B virus antigen from human blood: SERS immunoassay in a microfluidic system. Biosens. Bioelectron. 66, 461-467 (2015).
Liu R, Liu B, Guan G, Jiang C, Zhang Z. Multilayered shell SERS nanotags with a highly uniform single-particle Raman readout for ultrasensitive immunoassays. Chem. Commun. 48(75), 9421-9423 (2012).
Li M, Cushing SK, Zhang J et al. Three-dimensional hierarchical plasmonic nano-architecture enhanced surface-enhanced Raman scattering immunosensor for cancer biomarker detection in blood plasma. ACS Nano 7(6), 4967-4976 (2013).
Li M, Kang JW, Sukumar S, Dasari RR, Barman I. Multiplexed detection of serological cancer markers with plasmon-enhanced Raman spectro-immunoassay. Chem. Sci. 6(7), 3906-3914 (2015).
McQueenie R, Stevenson R, Benson R et al. Detection of inflammation in vivo by surface-enhanced Raman scattering provides higher sensitivity than conventional fluorescence imaging. Anal. Chem. 84(14), 5968-5975 (2012).
Lee S, Chon H, Lee J et al. Rapid and sensitive phenotypic marker detection on breast cancer cells using surface-enhanced Raman scattering (SERS) imaging. Biosens. Bioelectron. 51, 238-243 (2014).
Liang J, Liu H, Huang C et al. Aggregated silver nanoparticles based surface-enhanced Raman scattering Enzyme-Linked Immunosorbent Assay for ultrasensitive detection of protein biomarkers and small molecules. Anal. Chem. 87(11), 5790-5796 (2015).
Lopez A, Lovato F, Hwan Oh S, Lai YH, Filbrun S, Driskell EA, Driskell JD. SERS immunoassay based on the capture and concentration of antigen-assembled gold nanoparticles. Talanta 146, 388-393 (2016).
Guerrini L, Pazos E, Penas C, Vazquez ME, Mascarenas JL, Alvarez-Puebla RA. Highly sensitive SERS quantification of the oncogenic protein c-Jun in cellular extracts. J. Am. Chem. Soc. 135(28), 10314-10317 (2013).
Maiti KK, Dinish US, Samanta A et al. Multiplex targeted in vivo cancer detection using sensitive near-infrared SERS nanotags. Nano Today 7(2), 85-93 (2012).