Controlled release; biological pest control; alginate; E-β-caryophyllene; climatic factors; sorption
Abstract :
[en] Description of the subject. Alginate beads that release semiochemical compounds are interesting biological control devices used to attract the natural enemies of aphids in infested crops. Little information, however, is available about the impact of climatic factors on the release of semiochemicals from this diffusive system.
Objectives. The objective of this scoping study was to investigate the impact of temperature, relative humidity and wind speed, on the release of E-β-caryophyllene from alginate beads.
Method. The impact of the three climatic factors on the release of E-β-caryophyllene from alginate beads was evaluated using a Box-Behnken experimental design and a laboratory scale volatile collection system. The influence of relative humidity on bead water content and size, with and without this semiochemical, was also investigated using a gravimetric method and an easy-to-use photographic device, respectively.
Results. The results showed that an increase in temperature caused a significant increase in the E-β¬-caryophyllene release rate. Neither relative humidity nor airflow, however, had a significant effect on the release of this semiochemical when relative humidity and wind speed ranged from 33% to 75% and from 6.61 x10-4 m.s-1 to 2.05 x10-2 m.s-1, respectively. The isotherm curves obtained were characteristic of food products and biopolymer materials. The isotherm shapes were not modified by the incorporation of the semiochemical into alginate beads, and showed an important increase in water content when relative humidity values exceeded 85%. Fortunately, this water content increase did not affect bead size, which facilitates the calculation of E-β-caryophyllene release.
Conclusion. The present study shows for the first time the impact of the three main climatic factors on the release of E-β-caryophyllene from alginate beads. It allows learning more about how these biological control devices operate in order to optimize future field trials.
Brostaux, Yves ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Statistique, Inform. et Mathém. appliquée à la bioingénierie
Francis, Frédéric ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Entomologie fonctionnelle et évolutive
Lognay, Georges ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Heuskin, Stéphanie ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Analyse, qual. et risques - Labo. de Chimie analytique
Language :
English
Title :
Impact of climatic factors on the release of E-β-caryophyllene from alginate beads
Alternative titles :
[fr] Impact des facteurs climatiques sur la diffusion du E-β-caryophyllène à partir de billes d'alginate
Publication date :
2016
Journal title :
Biotechnologie, Agronomie, Société et Environnement
ISSN :
1370-6233
eISSN :
1780-4507
Publisher :
Presses Agronomiques de Gembloux, Gembloux, Belgium
Alhmedi A., Haubruge É. & Francis F., 2010. Identification of limonene as a potential kairomone of the harlequin ladybird Harmonia axyridis (Coleoptera: Coccinellidae). Eur. J. Entomol., 107, 541-548.
Arlabosse P. et al., 2003. Comparison between static and dynamic methods for sorption isotherm measurements. Drying Technol., 21, 479-497.
Atterholt C.A., Delwiche M.J., Rice R.E. & Krochta J.M., 1999. Controlled release of insect sex pheromones from paraffin wax and emulsions. J. Controlled Release, 57, 233-247.
Baucour P. & Daudin J.D., 2000. Development of a new method for fast measurement of water sorption isotherms in the high humidity range validation on gelatin gel. J. Food Eng., 44, 97-107.
Betigeri S.S. & Neau H.S., 2002. Immobilization of lipase using hydrophilic polymers in the form of hydrogel beads. Biomaterials, 23, 3627-3636.
Byers J., 1988. Novel diffusion-dilution method for release of semiochemicals: testing pheromone component ratios on Western Pine Beetle. J. Chem. Ecol., 14(1), 199-212.
Chang C.P. & Dobashi T., 2003. Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surface, B, 32, 257-262.
Cork A. et al., 2008. Development of a PVC-resin-controlled release formulation for pheromones and use in mating disruption of yellow rice stem borer. Crop Prot., 27, 248-255.
Cox P.D., 2004. Potential for using semiochemicals to protect stored products from insect infestation. J. Stored Prod. Res., 40, 1-25.
Cranck J., 1975. The mathematics of diffusion. 2nd ed. London: Oxford University Press, chapter 6, 89-103.
Davis T.A. et al., 2003. H-NMR study of Na alginates extracted from Sargassum spp. in relation to metal biosorption. Appl. Biochem. Biotechnol., 110(2), 75-90.
De Vlieger J.J., 2001. Development of a sprayable slow-release formulation for the sex pheromone of the Mediterranean corn borer, Sesamia nonagroides. IOBC WPRS Bull., 24(2), 101-106.
Draget K.I., Skjak-Braek G. & Smidsrod O., 1997. Alginate based new materials. Int. J. Biol. Macromol., 21, 47-55.
Ferrasse J.H. & Lecomte D., 2004. Simultaneous heat-flow differential calorimetry and thermogravimetry for fast determination of sorption isotherms and heat of sorption in environmental or food engineering. Chem. Eng. Sci., 59, 1365-1376.
Golub M., Weatherston J. & Benn M.H., 1983. Measurement of release rates of gossyplure from controlled release formulations by mini-airflow method. J. Chem. Ecol., 9(3), 323-333.
Grassi M., Colombo I. & Lapasin R., 2001. Experimental determination of theophylline diffusion coefficient in swollen sodium-alginate membranes. J. Controlled Release, 76, 93-105.
Hambleton A., Voilley A. & Debeaufort F., 2011. Transport parameters for aroma compounds through i-carrageenan and sodium alginate-based edible films. Food Hydrocolloids, 25(5), 1128-1133.
Hambleton A. et al., 2012. The Schroeder paradox or how the state of water affects the moisture transfer through edible films. Food Chem., 132, 1671-1678.
Hennesy P.J., Stipanovic A.J. & Webster F., 2004. Microparticle dispensers for the controlled release of insect pheromones. J. Agric. Food Chem., 52(8), 2301-2308.
Heuskin S. et al., 2010. Validation of a gas chromatographic method for the study of semiochemical slow release formulations. J. Pharm. Biomed. Anal., 53, 962-972.
Heuskin S. et al., 2011. The use of semiochemical slow-release devices in integrated pest management strategies. Biotechnol. Agron. Soc. Environ., 15(3), 459-470.
Heuskin S. et al., 2012a. Optimisation of a semiochemical slow-release alginate formulation attractive towards Aphidius ervi Haliday parasitoids. Pest Manage. Sci., 68, 127-136.
Heuskin S. et al., 2012b. A semiochemical slow-release formulation in a biological control approach to attract hoverflies. J. Environ. Ecol., 3(1), 72-85.
Hofmeyr J.H. & Burger B.V., 1995. Controlled-release pheromone dispenser for use in traps to monitor flight activity of false codling moth. J. Chem. Ecol., 21(3), 355-363.
Johansson B.G. et al., 2001. Release rates for pine sawly pheromones from two types of dispensers and phenology of Neodiprion sertifer. J. Chem. Ecol., 27, 733-745.
Kehat M. et al., 1994. Sex pheromone traps for monitoring the codling moth: effect of dispenser type, field aging of dispenser, pheromone dose and type of trap on male captures. Entomol. Exp. Appl., 70(1), 55-62.
Kogan M., 1998. Integrated pest management: historical perspectives and contemporary developments. Annu. Rev. Entomol., 43, 243-270.
Krüger A.J. & Tolmay A.T., 2002. Prediction of the release characteristics of alcohols from EVA using a model based on Fick’s second law of diffusion. J. Appl. Polym. Sci., 84, 806-813.
Lai F. et al., 2007. Artemesia arborescens L. essential oil loaded beads: preparation and characterization. AAPS PharmSciTech, 8(3), E1-E7.
Lian G., Malone M.E., Homan J.E. & Norton I.T., 2004. A mathematical model of volatile release in mouth from the dispersion of gelled emulsion particles. J. Controlled Release, 98, 139-155.
Lopez J.D., Leonhardt B.A. & Shaver T.N., 1991. Performance criteria and specifications for laminated plastic sex pheromone dispenser for Helicoverpa zea (Lepidoptera: Noctuidae). J. Chem. Ecol., 17(11), 2293-2305.
Malone M.E. & Appelqvist I.A., 2003. Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. J. Controlled Release, 90, 227-241.
Mathlouthi M. & Rogé B., 2003. Water vapour sorption isotherms and the caking of food powders. Food Chem., 82, 61-71.
McDonough L.M, 1991. Controlled release of insect sex pheromones from a natural rubber substrate. In: Hedin P.A., ed. Naturally occurring pest bioregulators. Washington: American Chemical Society, 106-124.
Olivas G.I. & Barbosa-Cánovas G.V., 2008. Alginate-calcium films: water vapor permeability and mechanical properties as affected by plasticizer and relative humidity. LWT Food. Sci. Technol., 41, 359-366.
Rao M.A. & Rizvi S.S.H., 1995. Engineering properties of foods. 2nd ed. New York, USA: Marcel Dekker, 242.
Reddy G.V.P. & Guerrero A., 2004. Interactions of insect pheromones and plant semiochemicals. Trends Plant Sci., 9(5), 253-261.
Rhim J.W., 2004. Physical and mechanical properties of water resistant sodium alginate films. LWT Food. Sci. Technol., 37, 323-330.
Sasso R. et al., 2009. Electrophysiological and behavioural responses of Aphidius ervi (Hymenoptera: Braconidae) to tomato plant volatiles. Chemoecology, 19, 195-201.
Selmer-Olsen E., Sorhaug T., Birkeland S.E. & Pehrson R., 1999. Survival of Lactobacillus helveticus entrapped in Ca-alginate in relation to water content, storage and rehydration. J. Ind. Microbiol. Biotechnol., 23, 79-85.
Shem P.M. et al., 2009. Release kinetics of a synthetic tsetse allomone derived from waterbuck odour from a Tygon silicon dispenser under laboratory and semi field conditions. Am. Eurasian J. Agric. Environ. Sci., 6(6), 625-636.
Suckling D.M., Green S.R., Gibb A.R. & Karg G., 1999. Predicting atmospheric concentration of pheromone in treated apple orchards. J. Chem. Ecol., 25(1), 117-139.
Tapia D.H., Morales F. & Grez A.A., 2010. Olfactory cues mediating prey-searching behavior in interacting aphidophagous predators: are semiochemicals key factors in predator-facilitation? Entomol. Exp. Appl., 137, 28-35.
Tomaszewska E. et al., 2005. Evaluation of pheromone release from commercial mating disruption dispensers. J. Agric. Food Chem., 53, 2399-2405.
Tomova B.S., Waterhouse J.S. & Boberski J., 2005. The effect of fractionated Tagetes oil volatiles on aphid reproduction. Entomol. Exp. Appl., 115, 153-159.
Torr S.J., Hall D.R., Phelps R.J. & Vale G.A., 1997. Methods for dispensing odour attractants for tsetse flies (Diptera: Glossinidae). Bull. Entomol. Res., 87, 299-311.
Van der Kraan C. & Ebbers A., 1990. Release rates of tetradecen-1-ol acetates from polymeric formulations in relation to temperature and air velocity. J. Chem. Ecol., 16, 1041-1058.
Velings N., 1997. Propriétés physico-chimiques des billes d’alginates et leur influence sur l’incorporation ou le relargage de molécules bioactives. Thèse de doctorat: Université catholique de Louvain, Louvain-la-Neuve (Belgique).
Velings N. & Mestdagh M., 1995. Physico-chemical properties of alginate gel beads. Polym. Gels Networks, 3, 311-330.
Velings N., Ouwerx C., Mestdagh M. & Axelos M., 1996. Physico-chemical properties of alginate gel beads and their incidence on retention/release of proteins. In: Proceedings of the 5th International Workshop on Bioencapsulation, from fundamentals to industrial applications, September 23-25, 1996, Postdam, Germany, talk 37.
Welter S.C. et al., 2005. Pheromone mating disruption offers selective management option for key pests. California Agric., 59(1), 16-22.
Witzgall P., 2001. Pheromones – future techniques for insect control? Pheromones for insect control in orchards and vineyards. IOBC WPRS Bull., 24(2), 114-122.
Yosha I., Shani A. & Magdassi S., 2008. Slow release of pheromones to the atmosphere from gelatin-alginate beads. J. Agric. Food Chem., 56, 8045-8049.
Zada A., Falach L. & Byers J.A., 2009. Development of sol-gel formulations for slow release of pheromones. Chemoecology, 19, 37-45.
Zhang A. et al., 2008. Activity evaluation of cocoa pod borer sex pheromone in cacao fields. Environ. Entomol., 37(3), 719-724.
Zhu H. et al., 2015. Measurement of semiochemical release rates with a dedicated environmental control system. Biosyst. Eng., 129, 277-287.