[en] Among the soil management practices used to promote sustainable agriculture, reduced tillage and
retention of residues from the previous crop are reported to enhance significantly both soil fertility and
crop productivity. Here, high-throughput sequencing (454 technology) was used to see how the tillage
regime (conventional vs. reduced tillage) and the fate of crop residues (retention or removal) affect
microbial communities at two sampling depths (top soil: 0–5 cm and deeper soil: 15–20 cm) in a fertile
silty loam soil in Belgium. All combinations of these three factors were studied. After 6 years of
conversion from conventional to reduced tillage, depth emerged as the main factor responsible for
variation in microbial diversity, tillage regime ranked second, and
finally, crop residue fate had no influence
on microbial diversity. For both bacteria and fungi, the diversity appeared higher in the top soil than in
the deeper soil, and surprisingly, higher under conventional than under reduced tillage. These differences
are explained by changes in community composition due to taxon loss rather than taxon replacement.
The specific local set of environmental conditions (a loess-derived soil and an oceanic temperate climate)
may explain these results. These observations raise the question: does impoverishment in indicator taxa
influence soil processes, and thus crop production? To answer this question, we discuss how the presence
of certain indicator taxa liable to play an ecological role might relate to crop productivity.
Research Center/Unit :
AgricultureIsLife , TERRA Teaching and Research Centre - TERRA
Disciplines :
Agriculture & agronomy
Author, co-author :
Degrune, Florine ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Theodorakopoulos, Nicolas ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Dufrêne, Marc ; Université de Liège > Ingénierie des biosystèmes (Biose) > Biodiversité et Paysage
Colinet, Gilles ; Université de Liège > Ingénierie des biosystèmes (Biose) > Echanges Eau-Sol-Plantes
Bodson, Bernard ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Hiel, Marie-Pierre ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Phytotechnie des régions tempérées
Taminiau, Bernard ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Daube, Georges ; Université de Liège > Département de sciences des denrées alimentaires (DDA) > Microbiologie des denrées alimentaires
Vandenbol, Micheline ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Microbiologie et génomique
Other collaborator :
Nezer, Carine
Language :
English
Title :
No favorable effect of reduced tillage on microbial community diversity in a silty loam soil (Belgium)
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bahram M., Peay K.G., Tedersoo L. Local-scale biogeography and spatiotemporal variability in communities of mycorrhizal fungi. New Phytol. 2015, 205:1454-1463. 10.1111/nph.13206.
Brosius J., Dull T.J., Sleeter D.D., Noller H.F. Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. Mol. Biol. 1981, 148:107-127.
Bardgett R.D. Causes and consequences of biological diversity in soil1. Zoology 2002, 105:367-375. 10.1078/0944-2006-00072.
Baselga A. Partitioning the turnover and nestedness components of beta diversity. Glob. Ecol. Biogeogr. 2010, 19:134-143. 10.1111/j.1466-8238.2009.00490.x.
Bottalico A., Perrone G. Toxigenic Fusarium species and mycotoxins associated with head blight in small-grain cereals in Europe. Eur. J. Plant Pathol. 2002, 108:611-624.
Cardenas E., Tiedje J.M. New tools for discovering and characterizing microbial diversity. Curr. Opin. Biotechnol. 2008, 19:544-549. 10.1016/j.copbio.2008.10.010.
Ceja-Navarro J.A., Rivera-Orduña F.N., Patiño-Zúñiga L., Vila-Sanjurjo A., Crossa J., Govaerts B., Dendooven L. Phylogenetic and multivariate analyses to determine the effects of different tillage and residue management practices on soil bacterial communities. Appl. Environ. Microbiol. 2010, 76:3685-3691. 10.1128/AEM.02726-09.
Clapperton M.J. Increasing soil biodiversity through conservation agriculture: managing the soil as a habitat. Proc Second World Cong Conserv. Agric. Prod. Harmony Nat. 2003.
Cole J.R., Wang Q., Cardenas E., Fish J., Chai B., Farris R.J., Kulam-Syed-Mohideen A.S., McGarrell D.M., Marsh T., Garrity G.M., Tiedje J.M. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 2009, 37:D141-D145. 10.1093/nar/gkn879.
Colwell, R.K., 2005. EstimateS: Statistical estimation of species richness and shared species from samples. Version 9. Persistent URL: purl.ococ.org/estimates 2013.
Degrune F., Dufrêne M., Colinet G., Massart S., Taminiau B., Bodson B., Hiel M.-P., Daube G., Nezer C., Vandenbol M. A novel sub-phylum method discriminates better the impact of crop management on soil microbial community. Agron. Sustain. Dev. 2015, 35:1157-1166. 10.1007/s13593-015-0291-4.
Denslow J.S., Pickett S.T.A., White P.S. Disturbance-mediated coexistence of species. The Ecology of Natural Disturbance and Patch Dynamics 1985.
Dorr de Quadros P., Zhalnina K., Davis-Richardson A., Fagen J.R., Drew J., Bayer C., Camargo F.A., Triplett E.W. The effect of tillage system and crop rotation on soil microbial diversity and composition in a subtropical Acrisol. Diversity 2012, 4:375-395. 10.3390/d4040375.
Dufrêne M., Legendre P. Species assemblages and indicator species:the need for a flexible asymmetrical approach. Ecol. Monogr. 1997, 67:345-366. 10.1890/0012-9615(1997) 067[0345:SAAIST]2.0.CO;2.
Edgar R.C., Haas B.J., Clemente J.C., Quince C., Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 2011, 27:2194-2200.
Eilers K.G., Debenport S., Anderson S., Fierer N. Digging deeper to find unique microbial communities: the strong effect of depth on the structure of bacterial and archaeal communities in soil. Soil Biol. Biochem. 2012, 50:58-65. 10.1016/j.soilbio.2012.03.011.
Fierer N., Ladau J., Clemente J.C., Leff J.W., Owens S.M., Pollard K.S., Knight R., Gilbert J.A., McCulley R.L. Reconstructing the microbial diversity and function of pre-agricultural tallgrass prairie soils in the United States. Science 2013, 342:621-624. 10.1126/science.1243768.
Francis C.A., Beman J.M., Kuypers M.M.M. New processes and players in the nitrogen cycle: the microbial ecology of anaerobic and archaeal ammonia oxidation. ISME J. 2007, 1:19-27. 10.1038/ismej.2007.8.
Gage D.J. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 2004, 68:280-300. 10.1128/MMBR.68.2.280-300.2004.
Glick B.R. The enhancement of plant growth by free-living bacteria. Can. J. Microbiol. 1995, 41:109-117. 10.1139/m95-015.
Govindasamy V., Senthilkumar M., Magheshwaran V., Kumar U., Bose P., Sharma V., Annapurna K. Bacillus and Paenibacillus spp.: potential PGPR for sustainable agriculture. Plant Growth and Health Promoting Bacteria 2011, 333-364. Springer.
Hobbs P.R., Sayre K., Gupta R. The role of conservation agriculture in sustainable agriculture. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363:543-555. 10.1098/rstb.2007.2169.
Kibblewhite M.G., Ritz K., Swift M.J. Soil health in agricultural systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363:685-701.
Kladivko E.J. Tillage systems and soil ecology. Soil Tillage Res. 2001, 61:61-76. 10.1016/S0167-1987(01) 00179-9.
Knops J.M.H., Tilman D. Dynamics of soil nitrogen and carbon accumulation for 61 years after agricultural abandonment. Ecology 2000, 81:88-98.
Koorem K., Gazol A., Öpik M., Moora M., Saks Ü., Uibopuu A., Sõber V., Zobel M. Soil nutrient content influences the abundance of soil microbes but not plant biomass at the small-scale. PLoS One 2014, 9:e91998. 10.1371/journal.pone.0091998.
Kurtzman C.P., Robnett C.J. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol. 1997, 35:1216-1223.
Lienhard P., Terrat S., Prévost-Bouré N.C., Nowak V., Régnier T., Sayphoummie S., Panyasiri K., Tivet F., Mathieu O., Levêque J., Maron P.-A., Ranjard L. Pyrosequencing evidences the impact of cropping on soil bacterial and fungal diversity in Laos tropical grassland. Agron. Sustain. Dev. 2013, 34:525-533. 10.1007/s13593-013-0162-9.
Loreau M. Does functional redundancy exist?. Oikos 2004, 104:606-611. 10.1111/j.0030-1299.2004.12685.x.
Marhan S., Philippot L., Bru D., Rudolph S., Franzaring J., Högy P., Fangmeier A., Kandeler E. Abundance and activity of nitrate reducers in an arable soil are more affected by temporal variation and soil depth than by elevated atmospheric [CO2]. FEMS Microbiol. Ecol. 2011, 76:209-219. 10.1111/j.1574-6941.2011.01048.x.
Nannipieri P., Badalucco L. Biological processes. Handbook of Processes and Modelling in the Soil-Plant System 2003, 57-82. CRC Press, Binghamton, NY. D.K. Benbi, R. Nieder (Eds.).
Nannipieri P., Ascher J., Ceccherini M.T., Landi L., Pietramellara G., Renella G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54:655-670. 10.1046/j.1351-0754.2003.0556.
Navarro-Noya Y.E., Gómez-Acata S., Montoya-Ciriaco N., Rojas-Valdez A., Suárez-Arriaga M.C., Valenzuela-Encinas C., Jiménez-Bueno N., Verhulst N., Govaerts B., Dendooven L. Relative impacts of tillage, residue management and crop-rotation on soil bacterial communities in a semi-arid agroecosystem. Soil Biol. Biochem. 2013, 65:86-95. 10.1016/j.soilbio.2013.05.009.
Nelson D.W., Sommers L.E. Total carbon organic carbon, and organic matter. Methods Soil Anal. Part 2 Chem. Microbiol. Prop. Agronomy Monograph 1982, 539-579.
Nilsson L.O., Bååth E., Falkengren-Grerup U., Wallander H. Growth of ectomycorrhizal mycelia and composition of soil microbial communities in oak forest soils along a nitrogen deposition gradient. Oecologia 2007, 153:375-384.
Oksanen J., Kindt R., Legendre P., OHara B., Stevens M.H.H., Oksanen M.J., Suggests M. The vegan package. Community Ecol. Package 2007, 631-637.
Olsson P.A., Baath E., Jakobsen I. Phosphorus effects on the mycelium and storage structures of an arbuscular mycorrhizal fungus as studied in the soil and roots by analysis of fatty acid signatures. Appl. Environ. Microbiol. 1997, 63:3531-3538.
Paustian K., Six J., Elliott E.T., Hunt H.W. Management options for reducing CO2 emissions from agricultural soils. Biogeochemistry 2000, 48:147-163.
Poisot T., Péquin B., Gravel D. High-Throughput sequencing: a roadmap toward community ecology. Ecol. Evol. 2013, 3:1125-1139. 10.1002/ece3.508.
Pruesse E., Quast C., Knittel K., Fuchs B.M., Ludwig W., Peplies J., Glöckner F.O. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 2007, 35:7188-7196. 10.1093/nar/gkm864.
R Development Core Team R: A Language and Environment for Statistical Computing 2011, R Foundation for Statistical Computing, Vienna, Austria.
Rahman M.H., Okubo A., Sugiyama S., Mayland H.F. Physical, chemical and microbiological properties of an Andisol as related to land use and tillage practice. Soil Tillage Res. 2008, 101:10-19. 10.1016/j.still.2008.05.006.
Rhoton F.E. Influence of time on soil response to no-till practices. Soil Sci. Soc. Am. J. 2000, 64:700-709. 10.2136/sssaj2000.642700x.
Schimel J. Ecosystem consequences of microbial diversity and community structure. Arctic and Alpine Biodiversity: Patterns, Causes and Ecosystem Consequences 1995, 239-254. Springer, pp. F.S. Chapin, C. Koerner (Eds.).
Schloss P.D., Westcott S.L., Ryabin T., Hall J.R., Hartmann M., Hollister E.B., Lesniewski R.A., Oakley B.B., Parks D.H., Robinson C.J., Sahl J.W., Stres B., Thallinger G.G., Horn D.J.V., Weber C.F. Introducing mothur: open-Source, platform-Independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 2009, 75:7537-7541. 10.1128/AEM.;1;01541-09.
Scopel E., Triomphe B., Affholder F., Silva F.A.M.D., Corbeels M., Xavier J.H.V., Lahmar R., Recous S., Bernoux M., Blanchart E., de Carvalho Mendes I., Tourdonnet S.D. Conservation agriculture cropping systems in temperate and tropical conditions, performances and impacts. A review. Agron. Sustain. Dev. 2012, 33:113-130. 10.1007/s13593-012-0106-9.
Sengupta A., Dick W.A. Bacterial community diversity in soil under two tillage practices as determined by pyrosequencing. Microb. Ecol. 2015, 70:853-859. 10.1007/s00248-015-0609-4.
Thompson J.D., Higgins D.G., Gibson T.J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22:4673-4680.
Tilman D. Resource Competition and Community Structure 1982, Princeton University Press, Princeton, NJ.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.