disorders of consciousness; FDG-PET; fMRI; ICA; metabolism; resting state
Abstract :
[en] Introduction: The mildly invasive 18F-fluorodeoxyglucose positron emission
tomography (FDG-PET) is a well-established imaging technique to measure
‘resting state’ cerebral metabolism. This technique made it possible to assess
changes in metabolic activity in clinical applications, such as the study of severe
brain injury and disorders of consciousness. Objective: We assessed the possi-
bility of creating functional MRI activity maps, which could estimate the rela-
tive levels of activity in FDG-PET cerebral metabolic maps. If no metabolic
absolute measures can be extracted, our approach may still be of clinical use in
centers without access to FDG-PET. It also overcomes the problem of recogniz-
ing individual networks of independent component selection in functional mag-
netic resonance imaging (fMRI) resting state analysis. Methods: We extracted
resting state fMRI functional connectivity maps using independent component
analysis and combined only components of neuronal origin. To assess neu-
ronality of components a classification based on support vector machine
(SVM) was used. We compared the generated maps with the FDG-PET maps
in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome
patients and four locked-in patients. Results: The results show a significant
similarity with q = 0.75 0.05 for healthy controls and q = 0.58 0.09 for
vegetative state/unresponsive wakefulness syndrome patients between the FDG-
PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the
conjunction analysis show decreases in frontoparietal and medial regions in
vegetative patients with respect to controls. Subsequent analysis in locked-in
syndrome patients produced also consistent maps with healthy controls.
Conclusions: The constructed resting state fMRI functional connectivity map
points toward the possibility for fMRI resting state to estimate relative levels of
activity in a metabolic map.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others Neurology
Author, co-author :
Soddu, Andrea ✱; Université de Liège > Centre de recherches du cyclotron
Gomez, Francisco ✱
Heine, Lizette ; Université de Liège > Centre de recherches du cyclotron
Di Perri, Carol ; Université de Liège > Centre de recherches du cyclotron
Bahri, Mohamed Ali ; Université de Liège > Centre de recherches du cyclotron
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Aiello, M., E. Salvatore, A. Cachia, S. Pappatà, C. Cavaliere, A. Prinster, et al. 2015. Relationship between simultaneously acquired resting-state regional cerebral glucose metabolism and functional MRI: a PET/MR hybrid scanner study. NeuroImage 113:111-121.
Ashwal, S., and R. Cranford . 1995. Medical aspects of the persistent vegetative state-a correction. The Multi-Society Task Force on PVS. N. Engl. J. Med. 333:130.
Bardin, J. C., J. J. Fins, D. I. Katz, J. Hersh, L. A. Heier, K. Tabelow, et al. 2011. Dissociations between behavioural and functional magnetic resonance imaging-based evaluations of cognitive function after brain injury. Brain 134:769-782.
Beckmann, C. F., M. DeLuca, J. T. Devlin, and S. M. Smith . 2005. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. Lond. 360:1001-1013.
Birn, R. M., K. Murphy, and P. A. Bandettini . 2008. The effect of respiration variations on independent component analysis results of resting state functional connectivity. Hum. Brain Mapp. 29:740-750.
Biswal, B., F. Z. Yetkin, V. M. Haughton, and J. S. Hyde . 1995. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34:537-541.
Boly, M., M.-R. Coleman, M.-H. Davis, A. Hampshire, D. Bor, G. Moonen, et al. 2007. When thoughts become action: an fMRI paradigm to study volitional brain activity in non-communicative brain injured patients. NeuroImage 36:979-992.
Boly, M., L. Tshibanda, A. Vanhaudenhuyse, Q. Noirhomme, C. Schnakers, D. Ledoux, et al. 2009. Functional connectivity in the default network during resting state is preserved in a vegetative but not in a brain dead patient. Hum. Brain Mapp. 30:2393-2400.
Boveroux, P., A. Vanhaudenhuyse, M.-A. Bruno, Q. Noirhomme, S. Lauwick, A. Luxen, et al. 2010. Breakdown of within- and between-network resting state functional magnetic resonance imaging connectivity during propofol-induced loss of consciousness. Anesthesiology 113:1038-1053.
Bradley, A.-P. 1997. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30:1145-1159.
Bruno, M. A., S. Majerus, M. Boly, A. Vanhaudenhuyse, C. Schnakers, O. Gosseries, et al. 2012. Functional neuroanatomy underlying the clinical subcategorization of minimally conscious state patients. J. Neurol. 259:1087-1098.
Buckner, R. L., J. Sepulcre, T. Talukdar, F. M. Krienen, H. Liu, T. Hedden, et al. 2009. Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer's disease. J. Neurosci. 29:1860-1873.
Calhoun, V. D., T. Adali, G. D. Pearlson, and J. J. Pekar . 2001. A method for making group inferences from functional MRI data using independent component analysis. Hum. Brain Mapp. 14:140-151.
Cole, D. M., S. M. Smith, and C. F. Beckmann . 2010a. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4:8.
Cole, M. W., S. Pathak, and W. Schneider . 2010b. Identifying the brain's most globally connected regions. NeuroImage 49:3132-3148.
Coleman, M. R., J. M. Rodd, M. H. Davis, I. S. Johnsrude, D. K. Menon, J. D. Pickard, et al. 2007. Do vegetative patients retain aspects of language comprehension? Evidence from fMRI. Brain 130:2494-2507.
Cordes, D., V. M. Haughton, K. Arfanakis, G. J. Wendt, P. A. Turski, C. H. Moritz, et al. 2000. Mapping functionally related regions of brain with functional connectivity MR imaging. AJNR Am. J. Neuroradiol. 21:1636-1644.
Damoiseaux, J. S., S. A. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, et al. 2006. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103:13848-13853.
Daubechies, I., E. Roussos, S. Takerkart, M. Benharrosh, C. Golden, K. D'Ardenne, et al. 2009. Independent component analysis for brain fMRI does not select for independence. Proc. Natl Acad. Sci. USA 106:10415-10422.
De Luca, M., C. F. Beckmann, N. De Stefano, P. M. Matthews, and S. M. Smith . 2006. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. NeuroImage 29:1359-1367.
De Martino, F., F. Gentile, F. Esposito, M. Balsi, F. Di Salle, R. Goebel, et al. 2007. Classification of fMRI independent components using IC-fingerprints and support vector machine classifiers. NeuroImage 34:177-194.
Dehaene, S., J. P. Changeux, L. Naccache, J. Sackur, and C. Sergent . 2006. Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn. Sci. 10:204-211.
Demertzi, A., F. Gómez, J. S. Cronec, A. Vanhaudenhuyse, L. Tshibanda, Q. Noirhomme, et al. 2014. Multiple fMRI system-level baseline connectivity is disrupted in patients with consciousness alterations. Cortex 52:35-46.
Di, H., M. Boly, X. Weng, D. Ledoux, and S. Laureys . 2008. Neuroimaging activation studies in the vegetative state: predictors of recovery? Clin. Med. 8:502-507.
Eggert, L. D., J. Sommer, A. Jansen, T. Kircher, and C. Konrad . 2012. Accuracy and reliability of automated gray matter segmentation pathways on real and simulated structural magnetic resonance images of the human brain. PLoS One 7:e45081.
Esposito, F., T. Scarabino, A. Hyvarinen, J. Himberg, E. Formisano, S. Comani, et al. 2005. Independent component analysis of fMRI group studies by self-organizing clustering. NeuroImage 25:193-205.
Esposito, F., A. Aragri, I. Pesaresi, S. Cirillo, G. Tedeschi, E. Marciano, et al. 2008. Independent component model of the default-mode brain function: combining individual-level and population-level analyses in resting-state fMRI. Magn. Reson. Imaging 26:905-913.
Fox, M. D., and M. E. Raichle . 2007. Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat. Rev. 8:700-711.
Fox, M. D., A. Z. Snyder, J. L. Vincent, M. Corbetta, D. C. Van Essen, and M. E. Raichle . 2005. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA 102:9673-9678.
Fridman, E. A., B. J. Beattie, A. Broft, S. Laureys, and N. D. Schiff . 2014. Regional cerebral metabolic patterns demonstrate the role of anterior forebrain mesocircuit dysfunction in the severely injured brain. PNAS 111:6473-6478.
Giacino, J. T., K. Kalmar, and J. Whyte . 2004. The JFK Coma Recovery Scale-Revised: measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 85:2020-2029.
Greicius, M. D., B. Krasnow, A. L. Reiss, and V. Menon . 2003. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100:253-258.
Greicius, M. D., G. Srivastava, A. L. Reiss, and V. Menon . 2004. Default-mode network activity distinguishes Alzheimer's disease from healthy aging: evidence from functional MRI. Proc. Natl Acad. Sci. USA 101:4637-4642.
Griffanti, L., G. Salimi-Khorshidi, C. F. Beckmann, E. J. Auerbach, G. Douaud, C. E. Sexton, et al. 2014. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging. NeuroImage 95:232-247.
Hartendorp, M., S. V. der Stigchel, J. Wagemans, I. Klugkist, and A. Postma . 2012. The activation of alternative response candidates: when do doubts kick in? Acta Psychol. 139:38-45.
He, B. J., A. Z. Snyder, J. M. Zempel, M. D. Smyth, and M. E. Raichle . 2008. Electrophysiological correlates of the brain's intrinsic large-scale functional architecture. Proc. Natl Acad. Sci. USA, 105:16039-16044.
Hsu, C.-W., C.-C. Chang, and C.-J. Lin . 2003. A practical guide to support vector classification. [thesis], Taipei.
Hyvarinen, A., J. Karhunen, and E. Oja . 2001. Independent component analysis. John Wiley & Sons, New York.
Kinney, H. C., and M. A. Samuels . 1994. Neuropathology of the persistent vegetative state. A review. J. Neuropathol. Exp. Neurol. 53:548-558.
Laureys, S. 2005. The neural correlate of (un)awareness: lessons from the vegetative state. Trends Cogn. Sci. 9:556-559.
Laureys, S., and N. D. Schiff . 2012. Coma and consciousness: paradigms (re)framed by neuroimaging. NeuroImage 61:478-491.
Laureys, S., S. Goldman, C. Phillips, P. Van Bogaert, J. Aerts, A. Luxen, et al. 1999. Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. NeuroImage 9:377-382.
Laureys, S., M. E. Faymonville, C. Degueldre, G. D. Fiore, P. Damas, B. Lambermont, et al. 2000. Auditory processing in the vegetative state. Brain 123(Pt 8):1589-1601.
Laureys, S., S. Antoine, M. Boly, S. Elincx, M. E. Faymonville, J. Berre, et al. 2002. Brain function in the vegetative state. Acta Neurol. Belg. 102:177-185.
Laureys, S., A. M. Owen, and N. D. Schiff . 2004. Brain function in coma, vegetative state, and related disorders. Lancet Neurol. 3:537-546.
Laureys, S., G. G. Celesia, F. Cohadon, J. Lavrijsen, J. Leon-Carrion, W. G. Sannita, et al. 2010. Unresponsive wakefulness syndrome: a new name for the vegetative state or apallic syndrome. BMC Med. 8:68.
Lowe, M. J., B. J. Mock, and J. A. Sorenson . 1998. Functional connectivity in single and multislice echoplanar imaging using resting-state fluctuations. NeuroImage 7:119-132.
McKeown, M. J., S. Makeig, G. G. Brown, T. P. Jung, S. S. Kindermann, A. J. Bell, et al. 1998. Analysis of fMRI data by blind separation into independent spatial components. Hum. Brain Mapp. 6:160-188.
Monti, M. M., A. Vanhaudenhuyse, M. R. Coleman, M. Boly, J. D. Pickard, L. Tshibanda, et al. 2010. Willful modulation of brain activity in disorders of consciousness. N. Engl. J. Med. 362:579-589.
Nir, Y., U. Hasson, I. Levy, Y. Yeshurun, and R. Malach . 2006. Widespread functional connectivity and fMRI fluctuations in human visual cortex in the absence of visual stimulation. NeuroImage 30:1313-1324.
Nir, Y., R. Mukamel, I. Dinstein, E. Privman, M. Harel, L. Fisch, et al. 2008. Interhemispheric correlations of slow spontaneous neuronal fluctuations revealed in human sensory cortex. Nat. Neurosci. 11:1100-1108.
Nugent, A. C., A. Martinez, A. D'Alfonso, C. A. Zarate, and W. H. Theodore . 2015. The relationship between glucose metabolism, resting-state fMRI BOLD signal, and GABAA-binding potential: a preliminary study in healthy subjects and those with temporal lobe epilepsy. J. Cereb. Blood Flow Metab. 35:583-591.
Owen, A. M., M. R. Coleman, D. K. Menon, E. L. Berry, I. S. Johnsrude, J. M. Rodd, et al. 2005a. Using a hierarchical approach to investigate residual auditory cognition in persistent vegetative state. Prog. Brain Res. 150:457-471.
Owen, A. M., M. R. Coleman, D. K. Menon, I. S. Johnsrude, J. M. Rodd, M. H. Davis, et al. 2005b. Residual auditory function in persistent vegetative state: a combined PET and fMRI study. Neuropsychol. Rehabil. 15:290-306.
Owen, A. M., M. R. Coleman, M. Boly, M. H. Davis, S. Laureys, and J. D. Pickard . 2006. Detecting awareness in the vegetative state. Science 313:1402.
Owen, A. M., N. D. Schiff, and S. Laureys . 2009. A new era of coma and consciousness science. Prog. Brain Res. 177:399-411.
Perlbarg, V., and G. Marrelec . 2008. Contribution of exploratory methods to the investigation of extended large-scale brain networks in functional MRI: methodologies, results, and challenges. Int. J. Biomed. Imaging 2008:218519.
Perlbarg, V., P. Bellec, J. L. Anton, M. Pelegrini-Issac, J. Doyon, and H. Benali . 2007. CORSICA: correction of structured noise in fMRI by automatic identification of ICA components. Magn. Reson. Imaging 25:35-46.
Phillips, C. L., M. A. Bruno, P. Maquet, M. Boly, Q. Noirhomme, C. Schnakers, et al. 2011. "Relevance vector machine" consciousness classifier applied to cerebral metabolism of vegetative and locked-in patients. NeuroImage 56:797-808.
Quarantelli, M., K. Berkouk, A. Prinster, B. Landeau, C. Svarer, L. Balkay, et al. 2004. Integrated software for the analysis of brain PET/SPECT studies with partial-volume-effect correction. J. Nucl. Med. 45:192-201.
Raichle, M. E., A. M. MacLeod, A. Z. Snyder, W. J. Powers, D. A. Gusnard, and G. L. Shulman . 2001. A default mode of brain function. Proc. Natl Acad. Sci. USA 98:676-682.
Riedl, V., K. Bienkowska, C. Strobel, M. Tahmasian, T. Grimmer, S. Förster, et al. 2014. Local activity determines functional connectivity in the resting human brain: a simultaneous FDG-PET/fMRI study. J. Neurosci. 34:6260-6266.
Rombouts, S. A., J. S. Damoiseaux, R. Goekoop, F. Barkhof, P. Scheltens, S. M. Smith, et al. 2009. Model-free group analysis shows altered BOLD FMRI networks in dementia. Hum. Brain Mapp. 30:256-266.
Seghier, M. L., P. Zeidman, N. H. Neufeld, A. P. Leff, and C. J. Price . 2010. Identifying abnormal connectivity in patients using dynamic causal modeling of FMRI responses. Front. Syst. Neurosci. 4:1-14.
Seth, A. K., A. B. Barrett, and L. Barnett . 2011. Causal density and integrated information as measures of conscious level. Philos. Trans. A Math. Phys. Eng. Sci. 369:3748-3767.
Soddu, A., A. Vanhaudenhuyse, A. Demertzi, M. A. Bruno, L. Tshibanda, H. Di, et al. 2011. Resting state activity in patients with disorders of consciousness. Funct. Neurol. 26:37-43.
Soddu, A., A. Vanhaudenhuyse, M. A. Bahri, M. A. Bruno, M. Boly, A. Demertzi, et al. 2012. Identifying the default-mode component in spatial IC analyses of patients with disorders of consciousness. Hum. Brain Mapp. 33:778-796.
Stender, J., O. Gosseries, M. A. Bruno, V. Charland-Verville, A. Vanhaudenhuyse, A. Demertzi, et al. 2014a. Diagnostic precision of PET imaging and functional MRI in disorders of consciousness: a clinical validation study. Lancet 9:514-522.
Stender, J., R. Kupers, A. Rodell, A. Thibaut, C. Chatelle, M. A. Bruno, et al. 2014b. Quantitative rates of brain glucose metabolism distinguish minimally conscious from vegetative state patients. J. Cereb. Blood Flow Metab. 35:58-65.
Teasdale, G., and B. Jennett . 1974. Assessment of coma and impaired consciousness. A practical scale. Lancet 2:81-84.
Teasdale, G., B. Jennett, L. Murray, and G. Murray . 1983. Glasgow coma scale: to sum or not to sum. Lancet 2:678.
Thibaut, A., M. A. Bruno, C. Chatelle, O. Gosseries, A. Vanhaudenhuyse, A. Demertzi, et al. 2012. Metabolic activity in external and internal awareness networks in severely brain-damaged patients. J. Rehabil. Med. 44:487-494.
Tohka, J., K. Foerde, A. R. Aron, S. M. Tom, A. W. Toga, and R. A. Poldrack . 2008. Automatic independent component labeling for artifact removal in fMRI. NeuroImage 39:1227-1245.
Tomasi, D., G. J. Wang, and N. D. Volkow . 2013. Energetic cost of brain functional connectivity. Proc. Natl Acad. Sci. 13:13642-13647.
Tononi, G., and G. M. Edelman . 1998. Consciousness and the integration of information in the brain. Adv. Neurol., 77:245-279; discussion 279-280.
Torralba, A., and A. Efros (2011) Unbiased look at dataset bias. In Computer Vision and Pattern Recognition (CVPR), IEEE Conference on (pp. 1521-1528). IEEE.
Vincent, J. L., G. H. Patel, M. D. Fox, A. Z. Snyder, J. T. Baker, D. C. Van Essen, et al. 2007. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447:83-86.
Ylipaavalniemi, J., and R. Vigario . 2008. Analyzing consistency of independent components: an fMRI illustration. NeuroImage 39: 169-180.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.