[en] The aim of this work is the validation of an Euler–Lagrange modeling approach coupling a CFD-based compartment model (Eulerian approach) and a stochastic model based on a Continuous-Time Markov Chain (Lagrangian approach). The turbulent flow structure and the mixing process in a bioreactor stirred by an axial Mixel TT impeller is characterized by PIV and tracer experiments. Comparison between experimental and numerical data shows that the CFD-based compartment model is able to reproduce accurately the spatial heterogeneities inside the bioreactor. The trajectory of a small tracer particle which perfectly follows the fluid flow is measured by optical trajectography. It is then simulated by a stochastic model which is either based on an homogeneous or on an inhomogeneous Continuous Time Markov Chain (CTMC). Comparison of residence and circulation time distributions in three zones defined inside the bioreactor shows that the inhomogeneous CTMC model predicts with an excellent accuracy the particle trajectories inside the bioreactor. The modeling approach proposed here could be an useful tool to design scale-down bioreactors in order to reproduce at lab-scale the stress levels encountered in large-scale production bioreactors and to characterize and compare different bioreactor configurations.
Research Center/Unit :
Department of Chemical Engineering / Products, Environment and Processes (PEPs)
Disciplines :
Chemical engineering
Author, co-author :
Delafosse, Angélique ; Université de Liège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Calvo, Sébastien ; Université de Liège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Collignon, Marie-Laure ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Delvigne, Frank ; Université de Liège > Agronomie, Bio-ingénierie et Chimie (AgroBioChem) > Bio-industries
Crine, Michel ; Université de Liège > Department of Chemical Engineering > Department of Chemical Engineering
Toye, Dominique ; Université de Liège > Department of Chemical Engineering > Génie de la réaction et des réacteurs chimiques
Language :
English
Title :
Euler–Lagrange approach to model heterogeneities in stirred tank bioreactors – Comparison to experimental flow characterization and particle tracking
Publication date :
29 September 2015
Journal title :
Chemical Engineering Science
ISSN :
0009-2509
eISSN :
1873-4405
Publisher :
Pergamon Press - An Imprint of Elsevier Science, Oxford, United Kingdom
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Amanullah A., McFarlane C.M., Emery A.N., Nienow A.W. Scale-down model to simulate spatial pH variations in large-scale bioreactors. Biotechnol. Bioeng. 2001, 73:390-399.
Bezzo F., Macchietto S., Pantelides C. General hybrid multizonal/CFD approach for bioreactor modeling. AIChE J. 2003, 48:2133-2148.
Bylund F., Guillard F., Enfors S.-O., Tragardh C., Larsson G. Scale down of recombinant protein production. a comparative study of scaling performance. Bioprocess Eng. 1999, 20:377-389.
Collignon, M.-L., 2012. Etude de lhdydrodynamique au sein d'un bioréacteur à cuve agitée utilisé pour la culture de cellules animales adhérentes sur microporteurs: Caractérisation expérimentale et théorique des écoulements via des outils eulériens et lagrangiens (PhD thesis). Université de Liège.
Collignon M.-L., Delafosse A., Crine M., Toye D. Axial impeller selection for anchorage dependent animal cell culture in stirred bioreactors. methodology based on the impeller comparison at just-suspended speed of rotation. Chem. Eng. Sci. 2010, 65(22):5929-5941.
Collignon M.-L., Dossin D., Delafosse A., Crine M., Toye D. Quality of mixing in a stirred bioreactor used for animal cells culture. heterogeneities in a lab scale bioreactor and evolution of mixing time with scale up. Biotechnol. Agron. Soc. Environ. 2010, 14:401-407.
Collignon, M.-L., Delafosse, A., Delvigne, F., Thonart, P., Crine, M. Toye, D., 2013. Développement d'un dispositif de trajectographie optique nécessaire pour la caractérisation expérimentale par une approche Euler-Lagrange des écoulements dans des bioréacteurs à cuve agitée. Récents Prog. Génie Procédés.
Delafosse A., Calvo S., Collignon M.-L., Delvigne F., Crine M., Thonart P., Toye D. CFD-based compartment model for description of mixing in bioreactors. Chem. Eng. Sci. 2014, 106:76-85.
Delafosse A., Collignon M.-L., Crine M., Toye D. Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller. Chem. Eng. Sci. 2011, 66:1728-1737.
Delafosse, A., Collignon, M.-L., Delvigne, F., Thonart, P., Crine, M., Toye, D., 2011b. Modèle hybride Euler-Lagrange pour la description des hétérogénéités dans les bioréacteurs. Récents Prog. Génie Procédés, no. 101.
Delvigne F., Destain J., Thonard P. A methodology for the design of scale-down bioreactors by the use of mixing and circulation stochastic models. Biochem. Eng. J. 2006, 28:256-268.
Delvigne F., Destain J., Thonart P. Bioreactor hydrodynamic effect on Escherichia coli physiology. experimental results and stochastic simulations. Bioprocess Biosyst. Eng. 2005, 28:131-137.
Delvigne F., Destain J., Thonart P. Structured mixing model for stirred bioreactors. an extension to the stochastic approach. Chem. Eng. J. 2005, 113:1-12.
Enfors S.-O., Jahic M., Rozkov A., Xu B., Hecker M., Jürgen B., Krüger E., Schweder T., Hamer G., O'Beirne D., Noisommit-Rizzi N., Reuss M., Boone L., Hewitt C., McFarlane C., Nienow A., Kovacs T., Trägardh C., Fuchs L., Revstedt J., Friberg P., Hjertager B., Blomsten G., Skogman H., Hjort S., Hoeks F., Lin H.-Y., Neubauer P., van der Lans R., Luyben K., Vrabel P., Manelius A. Physiological responses to mixing in large scale bioreactors. J. Biotechnol. 2001, 85:175-185.
George S., Larsson G., S.-O.E. A scale-down two-compartment reactor with controlled substrate oscillations. metabolic response of Saccharomyces cerevisiae. Bioprocess Eng. 1993, 9:249-257.
Godoy-Silva R., Chalmers J., Casnocha S., Bass L., Ma N. Physiological response of CHO cells to repetitive hydrodynamic stress. Biotechnol. Bioeng. 2009, 103(6 (August)):1103-1117.
Godoy-Silva R., Mollet M., Chalmers J. Evaluation of the effect of chronic hydrodynamic stress on cultures of suspended CHO-6E6 cells. Biotechnol. Bioeng. 2009, 102(4 (March)):1119-1130.
Gregoriades N., Clay J., Ma N., Koelling K., Chalmers J. Cell damage on microcarrier cultures as a function of local energy dissipation created by a rapid extensional flow. Biotechnol. Bioeng. 2000, 69:171-182.
Hewitt C.J., Nebe-von Caron G., Axelsson B., M.F C.M., Nienow A.W. Studies related to scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry. effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol. Bioeng. 2000, 70:381-390.
Hu W., Berdugo C., Chalmers J. The potential of hydrodynamic damage to animal cells of industrial relevance. current understanding. Cytotechnology 2011, 63(5):445-460.
Junne, S., Klingner, A., Kabisch, J., Schweder, T., Neubauer, P., 2011. A two-compartment bioreactor system made of commercial parts for bioprocess scale-down studies: impact of oscillations on Bacillus subtilis fed-batch cultivations. Biotechnol. J. 8, 1009-1017.
Nienow A.W. Reactor engineering in large scale animal cell culture. Cytotechnology 2006, 50:9-33.
Nienow A.W., Scott W.H., Hewitt C.J., Thomas C.R., Lewis G., Amanullah A., Kiss R., Meier S.J. Scale-down studies for assessing the impact of different stress parameters on growth and product quality during animal cell culture. Chem. Eng. Res. Des. 2013, 91(11):2265-2274.
Osman, J.J., Birch, J., Varley, J., 2002. The response of GS-NSO myeloma cells to single and multiple pH perturbations. Biotechnol. Bioeng. 79, 398-407.
Sieck J., Budach W., Suemeghy Z., Leist C., Villiger T., Morbidelli M., Soos M. Adaptation for survival. phenotype and transcriptome response of CHO cells to elevated stress induced by agitation and sparging. J. Biotechnol. 2014, 189:94-103.
Sieck J., Cordes T., Budach W., Rhiel M., Suemeghy Z., Leist C., Villiger T., Morbidelli M., Soos M. Development of a scale-down model of hydrodynamic stress to study the performance of an industrial CHO cell line under simulated product scale bioreactor conditions. J. Biotechnol. 2013, 164:41-49.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.