Cloning of a Chryseobacterium (Flavobacterium) meningosepticum chromosomal gene (blaA(CME)) encoding an extended-spectrum class A beta-lactamase related to the Bacteroides cephalosporinases and the VEB-1 and PER beta-lactamases.
Rossolini, G. M.; Franceschini, N.; Lauretti, L.et al.
1999 • In Antimicrobial Agents and Chemotherapy, 43 (9), p. 2193-9
[en] In addition to the BlaB metallo-beta-lactamase, Chryseobacterium (Flavobacterium) meningosepticum CCUG 4310 (NCTC 10585) constitutively produces a 31-kDa active-site serine beta-lactamase, named CME-1, with an alkaline isoelectric pH. The blaA(CME) gene that encodes the latter enzyme was isolated from a genomic library constructed in the Escherichia coli plasmid vector pACYC184 by screening for cefuroxime-resistant clones. Sequence analysis revealed that the CME-1 enzyme is a new class A beta-lactamase structurally divergent from the other members of this class, being most closely related to the VEB-1 (also named CEF-1) and PER beta-lactamases and the Bacteroides chromosomal cephalosporinases. The blaA(CME) determinant is located on the chromosome and exhibits features typical of those of C. meningosepticum resident genes. The CME-1 protein was purified from an E. coli strain that overexpresses the cloned gene via a T7-based expression system by means of an anion-exchange chromatography step followed by a gel permeation chromatography step. Kinetic parameters for several substrates were determined. CME-1 is a clavulanic acid-susceptible extended-spectrum beta-lactamase that hydrolyzes most cephalosporins, penicillins, and monobactams but that does not hydrolyze cephamycins and carbapenems. The enzyme exhibits strikingly different kinetic parameters for different classes of beta-lactams, with both K(m) and k(cat) values much higher for cephalosporins than for penicillins and monobactams. However, the variability of both kinetic parameters resulted in overall similar acylation rates (k(cat)/K(m) ratios) for all types of beta-lactam substrates.
Frère, Jean-Marie ; Université de Liège > Département des sciences de la vie > Centre d'ingénierie des protéines
Amicosante, G.
Language :
English
Title :
Cloning of a Chryseobacterium (Flavobacterium) meningosepticum chromosomal gene (blaA(CME)) encoding an extended-spectrum class A beta-lactamase related to the Bacteroides cephalosporinases and the VEB-1 and PER beta-lactamases.
Publication date :
1999
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology, Washington, United States - District of Columbia
Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389-3402.
Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. London Biol. 289:321-331.
Ambler, R. P., A. F. W. Coulson, J.-M. Frère, J. M. Ghuysen, B. Joris, M. Forsman, R. C. Levesque, G. Tiraby, and S. G. Waley. 1991. A standard numbering scheme for the class A β-lactamases. Biochem. J. 276:269-272.
Barthélémy, M., J. Péduzzi, H. Bernard, C. Tancrède, and R. Labia. 1992. Close amino acid sequence relationship between the new plasmid-mediated extended-spectrum β-lactamase MEN-1 and chromosomally encoded enzymes of Klebsiella axytoca. Biochem. Biophys. Acta 1122:15-22.
Barthélémy, M., J. Péduzzi, and R. Labia. 1988. Complete amino acid sequence of p453-plasmid-mediated PIT-2 β-lactamase (SHV-1). Biochem. J. 251:73-79.
Bauernfeind, A., L. Stemplinger, R. Jungwirth, P. Mangold, S. Amann, E. Akalin, Ö. Ang, C. Bal., and J. M. Casellas. 1996. Characterization of β-lactamase gene blaPER-2, which encodes an extended-spectrum class A β-lactamase. Antimicrob. Agents Chemother. 40:616-620.
Bloch, K. C., R. Nadarajah, and R. Jacobs. 1997. Chryseobacterium meningosepticum: an emerging pathogen among immunocompromised adults. Report of 6 cases and literature review. Medicine (Baltimore) 76:30-41.
Bootsma, H. J., H. van Dijk, J. Verhoef, A. Fleer, and F. Mooi. 1996. Molecular characterization of the BRO β-lactamase of Moraxella (Branhamella) catarrhalis. Antimicrob. Agents Chemother. 40:966-972.
Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of proteins utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Bush, K., G. A. Jacoby, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39:1211-1233.
Chang, A. C., and S. N. Cohen. 1978. Construction and characterization of amplifiable multicopy DNA cloning vehicles derived from the P15A cryptic miniplasmid. J. Bacteriol. 134:1141-1156.
Couture, F., J. Lachapelle, and R. C. Levesque. 1992. Phytogeny of LCR-1 and OXA-5 with class A and class D β-lactamases. Mol. Microbiol. 6:1693-1705.
Danels, F., L. M. C. Hall, D. Gur, H. E. Akalin, and D. M. Livermore. 1995. Transferable production of PER-1 β-lactamase in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 35:281-294.
De Meester, F., B. Joris, G. Reckinger, C. Bellefroid-Bourguignon, J.-M. Frère, and S. G. Waley. 1987. Automated analysis of enzyme inactivation phenomena. Application to beta-lactamases and DD-peptidases. Biochem. Pharmacol. 36:2393-2403.
Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387-395.
Fass, R. J., and J. Barnishan. 1980. In vitro susceptibility of nonfermentative gram-negative bacilli other than Pseudomonas aeruginosa to 32 antimicrobial agents. Rev. Infect. Dis. 2:841-853.
Frère, J. M. 1995. Beta-lactamases and bacterial resistance to antibiotics. Mol. Microbiol. 16:385-395.
Fujii, T., K. Sato, E. Yokota, T. Maejima, M. Inoue, and S. Mitsuhashi. 1988. Properties of a broad spectrum β-lactamase isolated from Flavobacterium meningosepticum GN14059. J. Antibiot. 41:81-85.
Grantham, R., C. Gautier, M. Gouy, M. Jacobzone, and R. Mercier. 1981. Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res. 9:43-74.
Huovinen, P., and G. A. Jacoby. 1991. Sequence of the PSE-1 β-lactamase gene. Antimicrob. Agents Chemother. 35:2428-2430.
Knox, J. R. 1995. Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure. Antimicrob. Agents Chemother. 39:2593-2601.
Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680-685.
Livermore, D. M. 1995. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557-584.
Massidda, O., G. M. Rossolini, and G. Satta. 1991. The Aeromonas hydrophila cphA gene: molecular heterogeneity among class B metallo-β-lactamases. J. Bacteriol. 173:4611-4617.
Massova, I., and S. Mobashery. 1998. Kinship and diversification of bacterial penicillin-binding proteins and β-lactamases. Antimicrob. Agents Chemother. 42:1-17.
Matagne, A., J. Lamotte-Brasseur, and J.-M. Frère. 1998. Catalytic properties of class A β-lactamases: efficiency and diversity. Biochem. J. 330:581-598.
Naas, T., and P. Nordmann. 1994. Analysis of a carbapenem-hydrolyzing class A β-lactamase from Enterobacter cloacae and of its LysR-type regulatory protein. Proc. Natl. Acad. Sci. USA 91:7693-7697.
Naas, T., L. Vandel, W. Sougakoff, D. M. Livermore, and P. Nordmann. 1994. Cloning and sequence analysis of the gene for a carbapenem-hydrolyzing class A β-lactamase, Sme-1, from Serratia marcescens S6. Antimicrob. Agents Chemother. 38:1262-1270.
Nordmann, P., E. Ronco, T. Naas, C. Duport, Y. Michel-Briand, and R. Labia. 1993. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:962-969.
Nordmann, P., and T. Naas. 1994. Sequence analysis of PER-1 extended-spectrum β-lactamase from Pseudomonas aeruginosa and comparison with class A β-lactamases. Antimicrob. Agents Chemother. 38:104-114.
Owen, R. J., and J. J. S. Snell. 1976. Deoxyribonucleic acid reassociation in the classification of flavobacteria. J. Gen. Microbiol. 93:89-102.
Parker, A. C., and C. J. Smith. 1993. Genetic and biochemical analysis of a novel Ambler class A β-lactamase responsible for cefoxitin resistance in Bacteroides species. Antimicrob. Agents Chemother. 37:1028-1036.
Perilli, M., N. Franceschini, B. Segatore, G. Amicosante, A. Oratore, C. Duez, B. Joris, and J.-M. Frère. 1991. Cloning and nucleotide sequencing of the gene encoding the β-lactamase from Citrobacter diversus. FEMS Microbiol. Lett. 67:79-84.
Poirel, L., T. Naas, M. Guibert, E. B. Chaibi, R. Labia, and P. Nordmann. 1999. Molecular and biochemical characterization of VEB-1, a novel class A extended-spectrum β-lactamase encoded by an Escherichia coli integron gene. Antimicrob. Agents Chemother. 43:573-581.
Reynaud, A., J. Péduzzi, M. Barthélémy, and R. Labia. 1991. Cefotaxime-hydrolysing activity of the β-lactamase of Klebsiella oxytoca D488 could be related to a threonine residue at position 140. FEMS Microbiol. Lett. 65: 185-192.
Rogers, M. B., A. C. Parker, and C. J. Smith. 1993. Cloning and characterization of the endogenous cephalosporinase gene, cepA, from Bacteroides fragilis reveals a new subgroup of Ambler class A β-lactamases. Antimicrob. Agents Chemother. 37:2391-2400.
Rossolini, G. M., N. Franceschini, M. L. Riccio, P. S. Mercuri, M. Perilli, M Galleni, J.-M. Frère, and G. Amicosante. 1998. Characterization and sequence of the Chryseobacterium (Flavobacterium) meningosepticum carbapenemase: a new molecular class B β-lactamase showing a broad substrate profile. Biochem. J. 332:145-152.
Saitou, N., and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4:406-425.
Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
Segel, I. H. 1976. Biochemical calculations, 2nd ed., p. 236-241. John Wiley & Sons, Inc., New York, N.Y.
Seoane, A., and J. M. Garcia Lobo. 1991. Nucleotide sequence of a new class A β-lactamase gene from the chromosome of Yersinia enterocolitica: implications for the evolution of class A β-lactamases. Mol. Gen. Genet. 228:215-220.
Smith, C. J., T. K. Bennett, and A. C. Parker. 1994. Molecular and genetic analysis of the Bacteroides uniformis cephalosporinase gene cblA, encoding the species-specific β-lactamase. Antimicrob. Agents Chemother. 38:1711-1715.
Sutcliffe, J. G. 1978. Nucleotide sequence of the ampicillin resistance gene of Escherichia coli plasmid pBR322. Proc. Natl. Acad. Sci. USA 75:3737-3741.
Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22:4673-4680.
Trepanier, S., A. Prince, and A. Huletsky. 1997. Characterization of the penA and penR genes of Burkholderia cepacia 249 which encode the chromosomal class A penicillinase and its LysR-type transcriptional regulator. Antimicrob. Agents Chemother. 41:2399-2405.
Tribuddharat, C., and M. A. Fennewald. 1998. EMBL/GenBank database entry no. AF078527. EMBL European Bioinformatics Institute, Hinxton, United Kingdom.
Vahaboglu, H., L. M. C. Hall, L. Mulazimoglu, S. Dodanli, I. Yildirim, and D. M. Livermore. 1995. Resistance to extended-spectrum cephalosporins, caused by PER-1 β-lactamase, in Salmonella typhimurium from Istanbul, Turkey. J. Med. Microbiol. 43:294-299.
Vahaboglu, H., R. Ötztürk, G. Aigün, F. Coskunkan, A. Yaman, A. Kaygusuz, H. Leblebicioglu, I. Balik, K. Aydin, and M. Otkun. 1997. Widespread detection of PER-1-type extended-spectrum β-lactamase among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob. Agents Chemother. 41:2265-2269.
Walsh, T. R., A. P. MacGowan, and P. M. Bennett. 1997. Sequence analysis and enzyme kinetics of the L2 serine β-lactamase from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 41:1460-1464.