Abstract :
[en] Cancer cells have complex, unique characteristics that distinguish them from normal cells, such as increased growth rates and evasion of anti-proliferative signals. Global inhibition of class I and II histone deacetylases (HDACs) stops cancer cell proliferation in vitro and has proven effective against cancer in clinical trials, at least in part, through transcriptional reactivation of the p21(WAF1/Cip1)gene. The HDACs that regulate p21(WAF1/Cip1) are not fully identified. Using small interfering RNAs, we found that HDAC4 participates in the repression of p21(WAF1/Cip1) through Sp1/Sp3-, but not p53-binding sites. HDAC4 interacts with Sp1, binds and reduces histone H3 acetylation at the Sp1/Sp3 binding site-rich p21(WAF1/Cip1) proximal promoter, suggesting a key role for Sp1 in HDAC4-mediated repression of p21(WAF1/Cip1). Induction of p21(WAF1/Cip1) mediated by silencing of HDAC4 arrested cancer cell growth in vitro and inhibited tumor growth in an in vivo human glioblastoma model. Thus, HDAC4 could be a useful target for new anti-cancer therapies based on selective inhibition of specific HDACs.
Scopus citations®
without self-citations
138