[en] Although the field of bone regeneration has experienced great advancements in the last decades, integrating all the relevant, patient-specific information into a personalized diagnosis and optimal treatment remains a challenging task due to the large number of variables that affect bone regeneration. Computational models have the potential to cope with this complexity and to improve the fundamental understanding of the bone regeneration processes as well as to predict and optimize the patient-specific treatment strategies. However, the current use of computational models in daily orthopedic practice is very limited or inexistent. We have identified three key hurdles that limit the translation of computational models of bone regeneration from bench to bed side. First, there exists a clear mismatch between the scope of the existing and the clinically required models. Second, most computational models are confronted with limited quantitative information of insufficient quality thereby hampering the determination of patient-specific parameter values. Third, current computational models are only corroborated with animal models, whereas a thorough (retrospective and prospective) assessment of the computational model will be crucial to convince the health care providers of the capabilities thereof. These challenges must be addressed so that computational models of bone regeneration can reach their true potential, resulting in the advancement of individualized care and reduction of the associated health care costs. WIREs Syst Biol Med 2015, 7:183-194. doi: 10.1002/wsbm.1299 For further resources related to this article, please visit the WIREs website. CONFLICT OF INTEREST: The authors have declared no conflicts of interest for this article.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Carlier, Aurelie
Geris, Liesbet ; Université de Liège > Département d'aérospatiale et mécanique > Génie biomécanique
Lammens, Johan
Van Oosterwyck, Hans
Language :
English
Title :
Bringing computational models of bone regeneration to the clinic.
Publication date :
2015
Journal title :
Wiley Interdisciplinary Reviews. Systems Biology and Medicine
ISSN :
1939-5094
eISSN :
1939-005X
Publisher :
John Wiley & Sons, Hoboken, United States - New Jersey
Volume :
7
Issue :
4
Pages :
183-94
Peer reviewed :
Peer Reviewed verified by ORBi
European Projects :
FP7 - 279100 - BRIDGE - Biomimetic process design for tissue regeneration: from bench to bedside via in silico modelling
Einhorn TA. The cell and molecular biology of fracture healing. Clin Orthop Relat Res 1998, 355:S7-S21.
Bhandari M, Jain AK. Bone stimulators: beyond the black box. Indian J Orthop 2009, 43:109-110.
Mills LA, Simpson AH. The relative incidence of fracture non-union in the Scottish population (5.17 million): a 5-year epidemiological study. BMJ Open 2013, 3:e002276.
Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J Bone Miner Res 2007, 22:465-475.
Fong K, Truong V, Foote CJ, Petrisor B, Williams D, Ristevski B, Sprague S, Bhandari M. Predictors of nonunion and reoperation in patients with fractures of the tibia: an observational study. BMC Musculoskelet Disord 2013, 14:103.
Dormans JP, Fisher RC, Pill SG. Orthopaedics in the developing world: present and future concerns. J Am Acad Orthop Surg 2001, 9:289-296.
Roberts TT, Rosenbaum AJ. Bone grafts, bone substitutes and orthobiologics. The bridge between basic science and clinical advancements in fracture healing. Organogenesis 2012, 8:114-124.
Claes L, Recknagel S, Ignatius A. Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 2012, 8:133-143.
Marsh D. Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res 1998, 355:S22-S30.
Dimitriou R, Jones E, McGonagle D, Giannoudis PV. Bone regeneration: current concepts and future directions. BMC Med 2011, 9:66.
Isaksson H. Recent advances in mechanobiological modeling of bone regeneration. Mech Res Commun 2012, 42:22-31.
Pivonka P, Dunstan CR. Role of mathematical modeling in bone fracture healing. Bonekey Rep 2012, 1:221.
Geris L, Gerisch A, Schugart RC. Mathematical modeling in wound healing, bone regeneration and tissue engineering. Acta Biotheor 2010, 58:355-367.
Geris L. Regenerative orthopaedics: in vitro, in vivo and in silico. Int Orthop 2014, 38:1771-1778.
Carter DR, Beaupre GS, Giori NJ, Helms JA. Mechanobiology of skeletal regeneration. Clin Orthop Relat Res 1998, 355:S41-S55.
Claes LE, Heigele CA. Magnitudes of local stress and strain along bony surfaces predict the course and type of fracture healing. J Biomech 1999, 32:255-266.
Ament C, Hofer EP. A fuzzy logic model of fracture healing. J Biomech 2000, 33:961-968.
Bailon-Plaza A, van der Meulen MC. Beneficial effects of moderate, early loading and adverse effects of delayed or excessive loading on bone healing. J Biomech 2003, 36:1069-1077.
Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M. Influence of fracture gap size on the pattern of long bone healing: a computational study. J Theor Biol 2005, 235:105-119.
Shefelbine SJ, Augat P, Claes L, Simon U. Trabecular bone fracture healing simulation with finite element analysis and fuzzy logic. J Biomech 2005, 38:2440-2450.
Santoni BG, Womack WJ, Wheeler DL, Puttlitz CA. A mechanical and computational investigation oil the effects of conduit orientation on the strength of massive bone allografts. Bone 2007, 41:769-774.
Andreykiv A, van KF, Prendergast PJ. Simulation of fracture healing incorporating mechanoregulation of tissue differentiation and dispersal/proliferation of cells. Biomech Model Mechanobiol 2008, 7:443-461.
Isaksson H, van Donkelaar CC, Huiskes R, Ito KA. Mechano-regulatory bone-healing model incorporating cell-phenotype specific activity. J Theor Biol 2008, 252:230-246.
Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV. Angiogenesis in bone fracture healing: a bioregulatory model. J Theor Biol 2008, 251:137-158.
Chen G, Niemeyer F, Wehner T, Simon U, Schuetz MA, Pearcy MJ, Claes LE. Simulation of the nutrient supply in fracture healing. J Biomech 2009, 42:2575-2583.
Simon U, Augat P, Utz M, Claes L. A numerical model of the fracture healing process that describes tissue development and revascularisation. Comput Methods Biomech Biomed Engin 2011, 14:79-93.
Wehner T, Claes L, Niemeyer F, Nolte D, Simon U. Influence of the fixation stability on the healing time-a numerical study of a patient-specific fracture healing process. Clin Biomech (Bristol, Avon) 2010, 25:606-612.
Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M. Growth mixture model of distraction osteogenesis: effect of pre-traction stresses. Biomech Model Mechanobiol 2010, 9:103-115.
Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M. Modeling distraction osteogenesis: analysis of the distraction rate. Biomech Model Mechanobiol 2009, 8:323-335.
Reina-Romo E, Gomez-Benito MJ, Dominguez J, Niemeyer F, Wehner T, Simon U, Claes LE. Effect of the fixator stiffness on the young regenerate bone after bone transport: computational approach. J Biomech 2011, 44:917-923.
Byrne DP, Lacroix D, Prendergast PJ. Simulation of fracture healing in the tibia: mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 2011, 29:1496-1503.
Boccaccio A, Kelly DJ, Pappalettere C. A model of tissue differentiation and bone remodelling in fractured vertebrae treated with minimally invasive percutaneous fixation. Med Biol Eng Comput 2012, 50:947-959.
Vetter A, Witt F, Sander O, Duda GN, Weinkamer R. The spatio-temporal arrangement of different tissues during bone healing as a result of simple mechanobiological rules. Biomech Model Mechanobiol 2012, 11:147-160.
Burke DP, Kelly DJ. Substrate stiffness and oxygen as regulators of stem cell differentiation during skeletal tissue regeneration: a mechanobiological model. PloS One 2012, 7:e40737.
Carlier A, Geris L, Gastel NV, Carmeliet G, Oosterwyck HV. Oxygen as a critical determinant of bone fracture healing-a multiscale model. J Theor Biol 2014, 365:247-264.
Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L. A hybrid bioregulatory model of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 2011, 10:383-395.
Moazen M, Jones AC, Leonidou A, Jin ZM, Wilcox RK, Tsiridis E. Rigid versus flexible plate fixation for periprosthetic femoral fracture-computer modelling of a clinical case. Med Eng Phys 2012, 34:1041-1048.
Nasr S, Hunt S, Duncan N. Effect of screw position on bone tissue differentiation within a fixed femoral fracture. J Biomed Sci Eng 2013, 6:71-83.
Nassiri M, MacDonald B, O'Byrne JM. Locking compression plate breakage and fracture non-union: a finite element study of three patient-specific cases. Eur J Orthop Surg Traumatol 2012, 22:275-281.
Sun XQ, Kang YQ, Bao JG, Zhang YY, Yang YZ, Zhou XB. Modeling vascularized bone regeneration within a porous biodegradable CaP scaffold loaded with growth factors. Biomaterials 2013, 34:4971-4981.
Moore SR, Saidel GM, Knothe U, Knothe Tate ML. Mechanistic, mathematical model to predict the dynamics of tissue genesis in bone defects via mechanical feedback and mediation of biochemical factors. PLoS Comput Biol 2014, 10:e1003604.
Taljanovic MS, Jones MD, Ruth JT, Benjamin JB, Sheppard JE, Hunter TB. Fracture fixation. Radiographics 2003, 23:1569-1590.
Geris L, Reed AA, Vander SJ, Simpson AH, Van Oosterwyck H. Occurrence and treatment of bone atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 2010, 6:e1000915.
Carlier A, van GN Geris L, Carmeliet G, Van Oosterwyck H. Size does matter: an integrative in vivo-in silico approach for the treatment of critical size bone defects. PLoS Comput Biol 2014, 10:e1003888.
Freepik (http://www.freepik.com) from (http://andwww.flaticon.com). Title icons: broken bone/desktop computer/checklist on clipboard/medical-doctor-standing-beside-x-ray_48633/health-insurance-symbol-of-a-man-with-broken-arm_48956/Sheep front/Mouse pet. 2015.
Díaz V, Viceconti M, Stroetmann V, Kalra D. Discipulus-Roadmap for the Digital Patient. London: European Commission; 2013.
Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F. Bone fracture healing: cell therapy in delayed unions and nonunions. Bone 2014, 70:93-101.
Rothberg D, Lee M. Internal fixation of osteoporotic fractures. Curr Osteoporos Rep 2015, 13:16-21.
Bak B, Andreassen TT. The effect of aging on fracture healing in the rat. Calcif Tissue Int 1989, 45:292-297.
Day SM, DeHeer DH. Reversal of the detrimental effects of chronic protein malnutrition on long bone fracture healing. J Orthop Trauma 2001, 15:47-53.
Schindeler A, Little DG. Recent insights into bone development, homeostasis, and repair in type 1 neurofibromatosis (NFI). Bone 2008, 42:616-622.
Nikolaou VS, Efstathopoulos N, Kontakis G, Kanakaris NK, Giannoudis PV. The influence of osteoporosis in femoral fracture healing time. Injury 2009, 40:663-668.
Stinchfield FE, Sankaran B, Samilson R. The effect of anticoagulant therapy on bone repair. J Bone Joint Surg Amer 1956, 38:270-282.
Scolaro JA, Schenker ML, Yannascoli S, Baldwin K, Mehta S, Ahn J. Cigarette smoking increases complications following fracture. J Bone Joint Surg Amer 2014, 96A:674-681.
Altman RD, Latta LL, Keer R, Renfree K, Hornicek FJ, Banovac K. Effect of nonsteroidal antiinflammatory drugs on fracture healing: a laboratory study in rats. J Orthop Trauma 1995, 9:392-400.
Sabalic S, Kodvanj J, Pavic A. Comparative study of three models of extra-articular distal humerus fracture osteosynthesis using the finite element method on an osteoporotic computational model. Injury 2013, 44(Suppl 3):S56-S61.
Ode A, Duda GN, Geissler S, Pauly S, Ode JE, Perka C, Strube P. Interaction of age and mechanical stability on bone defect healing: an early transcriptional analysis of fracture hematoma in rat. PloS One 2014, 9:e106462.
Geris L, Gomez-Cabrero D. Uncertainty in Biology: A Computational Modeling Approach. Berlin: Springer; 2014.
Isaksson H, van Donkelaar CC, Huiskes R, Yao J, Ito K. Determining the most important cellular characteristics for fracture healing using design of experiments methods. J Theor Biol 2008, 255:26-39.
Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F. Are subject-specific musculoskeletal models robust to the uncertainties in parameter identification? PloS One 2014, 9:e112625.
Poelert S, Valstar E, Weinans H, Zadpoor AA. Patient-specific finite element modeling of bones. Proc Inst Mech Eng H 2013, 227:464-478.
Pountos I, Georgouli T, Pneumaticos S, Giannoudis PV. Fracture non-union: can biomarkers predict outcome? Injury 2013, 44:1725-1732.
Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Marelli N, Corradi A. Validation of the non-union scoring system in 300 long bone non-unions. Injury 2014, 45:S93-S97.
Rucker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mulhaupt R, Gellrich NC, Menger MD. Angiogenic and inflammatory response to biodegradable scaffolds in dorsal skinfold chambers of mice. Biomaterials 2006, 27:5027-5038.
Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann KH, Kampmann A, Mulhaupt R, Laschke MW, Menger MD, Gellrich NC, et al. Consequences of seeded cell type on vascularization of tissue engineering constructs in vivo. Microvasc Res 2009, 78:180-190.
Ehlke M, Ramm H, Lamecker H, Hege HC, Zachow S. Fast generation of virtual X-ray images for reconstruction of 3D anatomy. IEEE Trans Vis Comput Graph 2013, 19:2673-2682.
Bode A, Caroli A, Huberts W, Planken N, Antiga L, Bosboom M, Remuzzi A, Tordoir J. Clinical study protocol for the ARCH project-computational modeling for improvement of outcome after vascular access creation. J Vasc Access 2011, 12:369-376.
Lu YT, Engelke K, Puschel K, Morlock MM, Huber G. Influence of 3D QCT scan protocol on the QCT-based finite element models of human vertebral cancellous bone. Med Eng Phys 2014, 36:1069-1073.
Khan, A, Doucette, JA, Cohen, R, Lizotte, DJ. Integrating machine learning into a medical decision support system to address the problem of missing patient data. In: Machine Learning and Applications (ICMLA), 2012 11th International Conference, Boca Raton, FL, 12-15 December, 2012, 454-457.
Parnell SE, Wall C, Weinberger E. Interactive digital atlas of skeletal surveys for common skeletal dysplasias. Pediatr Radiol 2013, 43:803-813.
Carballido-Gamio J, Folkesson J, Karampinos DC, Baum T, Link TM, Majumdar S, Krug R. Generation of an atlas of the proximal femur and its application to trabecular bone analysis. Magn Reson Med 2011, 66:1181-1191.
Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, Ignatius A, Wildemann B, Lienau J, Peters A, et al. Rodent animal models of delayed bone healing and non-union formation: a comprehensive review. Eur Cell Mater 2013, 26:1-12.
Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, Steck R, Laschke MW, Wehner T, Bindl R, et al. Small animal bone healing models: standards, tips, and pitfalls results of a consensus meeting. Bone 2011, 49:591-599.
Reifenrath J, Angrisani N, Lalk M, Besdo S. Replacement, refinement, and reduction: necessity of standardization and computational models for long bone fracture repair in animals. J Biomed Mater Res A 2014, 102:2884-2900.
Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S. Patient-specific finite element analysis of the human femur-a double-blinded biomechanical validation. J Biomech 2011, 44:1666-1672.
Goeree R, Diaby V. Introduction to health economics and decision-making: is economics relevant for the frontline clinician? Best Pract Res Clin Gastroenterol 2013, 27:831-844.
Thiel R, Stroetmann KA, Stroetmann VN, Viceconti M. Designing a socio-economic assessment method for integrative biomedical research: the osteoporotic virtual physiological human project. Stud Health Technol Inform 2009, 150:876-880.
Thiel R, Viceconti M, Stroetmann K. Assessing biocomputational modelling in transforming clinical guidelines for osteoporosis management. Stud Health Technol Inform 2011, 169:432-436.
Delport H, Mulier M, Gelaude F, Clijmans T. Complex acetabular revision using computer-aided planning for patient-specific implant and guide. J Bone Joint Surg 2012, 94-B:40.
Kovatchev BP, Breton M, Man CD, Cobelli C. In silico preclinical trials: a proof of concept in closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009, 3:44-55.
Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, et al. Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin Pharmacol Ther 2011, 89:259-267.