
 

 

 

Article type:  Advanced Review 

Article title: Bringing computational models of bone regeneration to the clinic   
Authors:   

Full name and affiliation; email address if corresponding author; any conflicts of interest 

First author 
Aurélie Carlier 
Biomechanics Section, KU Leuven, Celestijnenlaan 300 C, PB 2419, 3000 Leuven, 
Belgium 
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 
PB 813, 3000 Leuven, Belgium 

Second author 
Liesbet Geris 
Biomechanics Section, KU Leuven, Celestijnenlaan 300 C, PB 2419, 3000 Leuven, 
Belgium 
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 
PB 813, 3000 Leuven, Belgium 
Biomechanics Research Unit, University of Liege, Chemin des Chevreuils 1 – BAT 52/3, 

4000 Liege 1, Belgium 

Third author 
Johan Lammens 
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 
PB 813, 3000 Leuven, Belgium 
University Hospitals of KU Leuven, Department of Orthopaedics, KU Leuven, 
Weligerveld 1 - blok 1, 3212 Pellenberg, Belgium 

Fourth author 
Hans Van Oosterwyck (*) hans.vanoosterwyck@kuleuven.be 
Biomechanics Section, KU Leuven, Celestijnenlaan 300 C, PB 2419, 3000 Leuven, 
Belgium 
Prometheus, Division of Skeletal Tissue Engineering, KU Leuven, O&N 1, Herestraat 49, 
PB 813, 3000 Leuven, Belgium 

 

The authors have declared that no competing interests exist. 

 

 

 



Abstract 

Although the field of bone regeneration has experienced great advancements the last decades, 
integrating all the relevant, patient-specific information into a personalized diagnosis and optimal 
treatment remains a challenging task due to the large number of variables that affect bone 
regeneration. Computational models have the potential to cope with this complexity and to improve 
the fundamental understanding of the bone regeneration processes as well as to predict and 
optimize the patient-specific treatment strategies. However, the current use of computational 
models in daily orthopedic practice is very limited or inexistent. We have identified three key hurdles 
that limit the translation of computational models of bone regeneration from bench to bed side. 
First, there exists a clear mismatch between the scope of the existing and the clinically required 
models. Second, most computational models are confronted with limited quantitative information of 
insufficient quality thereby hampering the determination of patient-specific parameter values. Third, 
current computational models are only corroborated with animal models whereas a thorough (retro- 
and prospective) assessment of the computational model will be crucial to convince the health care 
providers of the capabilities thereof. These challenges must be addressed so that computational 
models of bone regeneration can reach their true potential, resulting in the advancement of 
individualized care and reduction of the associated health care costs. 
 

 

 
 
Bone is a truly remarkable and interesting tissue. Not only provides the human adult skeleton 
support and protection for various organs in the body, the collection of 206 bones also stores 
minerals, produces blood cells and allows movement. Moreover, unlike other adult biological 
tissues, bone is the only tissue that can heal without the production of scar tissue. The regeneration 
of bone tissue is a complex, well-orchestrated process of cell recruitment, proliferation and 
differentiation regulated by several biochemical and mechanical factors. Unfortunately, despite 
bone’s remarkable healing capacity and the continuing research efforts, 5 to 10 percent of the over 
6 million fractures occurring annually in the USA develop into delayed or non-unions 1,2. In a more 
recent 5-year cross-sectional epidemiological study Mills et al. report a non-union incidence in the 
Scottish population of 22.45 in men and 15.65 in women per 100 000 population per annum 3. The 
complications in fracture healing often result in the need of reoperations or additional treatments, 
costing society large amounts of money. In 2005 the cost of the more than 2 million osteoporosis-
related fractures occurring in the USA was estimated at 17 billion dollar and the annual costs are 
projected to rise by 50% by 2025 due to the aging population 4.  Moreover, it is estimated that by 
2020, traffic accidents (a major cause of fractures) will rank in the top three causes of disability 5,6. As 
such, more knowledge of the complex physiological process of bone healing is a prerequisite for the 
prevention and effective treatment of complex fractures.  
 

This article will focus on the translation of computational models of bone regeneration towards 
clinical practice, including both models of the fundamental biological process of bone regeneration 
as well as of devices improving the bone healing outcome (e.g. fixation plates). First, the most recent 
modelling efforts will be summarized. Although many computational models of the fundamental 
biological process of bone regeneration exist, none have already entered the clinical arena to aid in 
the clinical decision process (e.g. prevention, diagnosis, treatment and monitoring) whereas patient-
specific finite element (FE) models have been adopted for the evaluation of individualized implant 
solutions in orthopedic bone and joint reconstruction surgery. The key challenges associated with 
the translation from bench to bed side will be identified and thoroughly discussed. Finally, some 
opportunities and conclusive remarks will be formulated.  



Computational modelling of bone regeneration  
 
Although the field of bone regeneration has experienced great advancements the last decades 7, 
integrating all the relevant, patient-specific information into a personalized diagnosis and optimal 
treatment remains a challenging task due to the large number of variables that affect bone 
regeneration 7–10. However, (patient-specific) computational models have the potential to cope with 
this complexity and to improve the fundamental understanding of the bone regeneration processes 
as well as to predict and optimize the patient outcome. Given the extensive amount of work in this 
modelling field, we only highlight some recent advances and focus specifically on the clinical 
potential of the computational models. For further information on the bioregulatory and 
mechanoregulatory algorithms used in these computational models we refer the reader to some 
excellent reviews 11–14.  

The most important computational models of bone regeneration, including their essential 
characteristics, are summarized in Table 1. Clearly, most models focus on the tissue scale, using 
differential equations to describe the mechanoregulatory or bioregulatory processes. Only Sun et al. 
15 and Carlier et al. 16 use a multiscale approach to capture the bone regeneration dynamics. Note 
that the more recent modeling frameworks often include some bioregulatory aspects of the bone 
regeneration process. Depending on the application, mechanoregulatory models use a linear elastic 
or a poroelastic material description as well as various definitions of the mechanical stimulus. The 
majority of the bioregulatory models includes a description of cells, growth factors and angiogenesis. 
More recent modeling efforts also focus on the influence of oxygen on the bone regeneration 
processes. Tissue growth during callus formation is only accounted for in the models of Chen et al. 17, 
Simon et al. 18 and Gomez-Benito et al. 19. Interestingly, none of the models listed in Table 1 capture 
the inflammation phase and very little frameworks include the remodeling phase. The last column of 
Table 1 indicates the level of clinical translation. It appears that most models are only corroborated 
in small or large animal models and extrapolate their findings for human predictions. Nevertheless, 
various computational models of bone regeneration hold great potential to address particular 
clinical questions as detailed in the following paragraphs.       

Impaired bone healing has been associated with a variety of factors including the mechanical and 
biological micro-environment. In order to ensure a correct anatomic alignment and to provide 
enough stability to allow (partial) loading while maintaining a certain interfragmentary movement 
for optimal secondary healing, orthopedic fixation is used (in combination with bone grafts or other 
bone substitutes if the biological micro-environment is also compromised). A variety of internal and 
external fixation devices are available that combine an adequate device stiffness with sufficient 
device strength and acceptable surgical technicalities: screws, plates, staples, wires, rods, Ilizarov 
fixator, etc. 20. These fixation designs can be critically evaluated and optimized with 
mechanoregulatory and FE models. Nasr et al. performed for example an idealized poroelastic finite 
element analysis to evaluate 19 different plate-screw combinations 21. They showed that a 4-screw 
symmetrical construct with a sufficient distance between the screws provides an optimal balance 
between stability (to allow weight bearing) and flexibility (to promote callus formation) 21. Similarly, 
Moazen et al. concluded that the bridging length made a more substantial difference to the stiffness 
and interfragmentary movement than varying the plate material, plate thickness or screw-plate 
fixation 22. Also Nassiri et al. have recently reported similar findings 23. The calculations of Boccaccio 
et al. indicated that the presence of percutaneous fixation devices significantly shortened the 
healing times of the fractured body of the L4 vertebra 24. Moreover, they also found that Cobalt-
Chrome would be a better alloy than Ti6Al4V due to its greater stiffness 24.  
 
The more challenging orthopedic cases do not only require adequate stabilization of the fracture but 
also biological support through e.g. distraction osteogenesis, bone grafting and/or the 
administration of growth factors. The influence of the pre-traction stresses, the distraction rate as 



well as the fixator stiffness on the bone regeneration process during bone transport was 
computationally investigated by Reina-Romo et al. 25–27. Their mechanoregulatory model showed 
that the inclusion of pre-traction stresses, i.e. the stress level in the gap tissue before each 
distraction step, affects the evolution of the bone regeneration process and consequently the 
reaction forces 25. Moreover, in agreement with clinical findings, a distraction rate of 1 mm/day was 
found to stimulate osteogenesis optimally 28. They also reported that a stiff fixator promotes bone 
formation while flexible fixators will give rise to excessive motion and adverse bone healing 27.  
 
Mechanoregulatory and FE models can also be used to evaluate bone grafting methods, a technique 
commonly performed in clinical practice for the skeletal reconstruction of large bone defects. In 
order to improve the access of surrounding vascularity and increase the graft incorporation, bone 
allografts are sometimes longitudinally or transversely perforated. Santoni et al. have used a finite 
element analysis to evaluate the structural and mechanical integrity of these constructs and 
conclude that longitudinal perforation does not adversely affect the mechanical properties of the 
graft 29.  
 
To date very little bioregulatory models of bone regeneration exist that can aid in the evaluation of 
bioactive molecules and tissue engineering strategies. Burke et al. have included biological cues such 
as oxygen tension in a mechanoregulatory model to study stem cell differentiation during fracture 
healing 30. A similar approach was taken by Moore et al. who include a mechanical regulation of 
BMP-2 production thus establishing a novel mechanobioregulatory framework 31. After comparing 
the in silico predictions with the observed in vivo outcome, Geris et al. have used a continuum-type 
model of fracture healing to simulate the injection of cultured MSCs 32. They conclude that eccentric 
injection resulted in unicortical bridging of an atrophic non-union. Moreover, a suitable time point 
for intervention was found to be three weeks post-osteotomy so that the blood supply to the 
fracture gap had already partially recovered 32. Similar conclusions were drawn by Carlier et al. who 
used a hybrid, multiscale bioregulatory model of fracture healing for an in depth investigation of the 
mechanisms of action underlying critical size defects 33. More specifically, the formation of a non-
union was attributed to the severe hypoxia in the central callus area 33. Motivated by these results, 
the timing of administration of osteoprogenitor cells or growth factors was explored further. Carlier 
et al. conclude that the timing of administration is only critical for cell therapies since the local 
oxygen tension will determine the survival as well as proliferation and differentiation potential of 
the administered cells and consequently the extent of the bone formation process. The calculations 
suggest a minimal delay of 5 weeks (for a 5 mm segmental defect in mouse bone) in order to allow 
for a (partial) restoration of the blood supply that can nurture the administered cells 33. Sun et al. 
also propose a computational framework to study the effect of different growth factors on the bone 
regeneration process and tailor their respective release profiles by controlling the pore size of a 
tissue engineered scaffold 15. 
 
Although these examples illustrate that various clinical questions can be adequately addressed by in 
silico techniques, the current use of computational models in daily orthopedic practice is very limited 
or inexistent. Indeed, there are several barriers to bring in silico models from the (computer) bench 
to the bed side which will be further elaborated in the next section.  

 
Key challenges 
 
While computational models of bone regeneration hold great promise to advance individualized 
care and reduce the associated health care costs, several key challenges need to be addressed 
including the selection of scope of the computational model, the generation of data for model 
construction and validation as well as the creation of user-friendly interfaces tailored to the clinical 
purpose (Figure 1). In this section we will highlight some of the most important challenges and apply 



them to the field of computational modelling of bone regeneration. We would like to refer the 
reader to the “Digital Patient Roadmap” for a broader and more exhaustive overview of the scientific 
and technological challenges associated with clinical computational models 34. 
 
Selection of the appropriate modelling scope  
Recent advances in fracture management, including better protocols, more strict patient follow-up 
and improvements in hardware as well as surgical techniques have contributed to a better 
prognosis, even in complex fractures 35. However, the treatment of for example atrophic non-unions, 
characterized by a severely hampered biological support for bone healing 7, or of osteoporotic 
fractures, characterized by limited fixation capabilities due to a poor bone quality 36, continues to 
represent a therapeutic challenge. Clearly, these two  examples of complex orthopedic challenges 
are associated with an impaired host environment. Although clinical complications mostly occur in 
patients with preexisting risk factors including old age 37, cachexia and malnutrition 38, immune 
compromise 8, genetic disorders (e.g. type 1 neurofibromatosis 39), osteoporosis 40, anticoagulants 41, 
smoking 42 and anti-inflammatory agents 43, computational models of bone regeneration to date 
mostly consider an average (i.e. healthy, young) subject. Consequently, there is a mismatch of the 
existing computational models of bone regeneration and the clinically required models as the 
(diseased) host environment is not adequately captured. The first important challenge in bringing 
computational models to the bed side is the development of clinically relevant models of bone 
regeneration that consider the compromised, diseased state.  
 
Some promising steps have already been taken in this direction. For example, Sabalic et al. used an 
osteoporotic finite element model to compare three fixation configurations for distal humerus 
fractures 44. They conclude that a Y-shaped plate is a potential alternative for the standard two-plate 
osteosynthesis method although further biomechanical studies are required 44. Ode et al. used 
whole-genome expression analysis to identify the key genes that are influenced by an interaction 
between the effects of mechanical fixation stability and age 45. The differentially expressed genes 
indicated an association with the following biological processes: extracellular space, cell migration 
and vascular development 45. By altering the parameter values of the functional forms corresponding 
to the biological processes identified by Ode et al. 45, the influence of patient age could be 
incorporated in existing computational models. In a next step, these improved models allow to 
simulate stratified patient populations (e.g. fracture healing in old versus young patients), taking a 
first step in the direction of patient-specific models of bone regeneration.    
 
Generation of (patient-specific) data 
Computational models massively rely on quantitative and qualitative data to (i) identify the 
theoretical backbone of the computational model and determine its parameter values,  (ii) validate 
the in silico predictions and (iii) update the framework with patient-specific information. 
Nevertheless, most computational models are confronted with limited quantitative information of 
insufficient quality due to a variety of reasons.  
 
A first question arises as to which aspects of the mechano- and bioregulatory models should be 
made patient-specific: the geometry, the parameter values, the boundary conditions, the initial 
conditions or a combination thereof? Sensitivity analysis methods, including Design of Experiments 
(DOE) can be a very valuable tool to determine the importance of the patient-specific aspects to the 
predicted model outcome 46. DOE (or experimental design) is a statistical tool that generates an 
array of combinations of different parameter values within a predefined parameter space. Next, the 
computational model is run with these parameter combinations and finally the results are 
statistically analyzed. This approach was taken by Isaksson et al. to determine the most important 
cellular characteristics of a mechanoregulatory model of bone healing. The parameters related to 
cartilage formation and degradation were found to significantly influence the bone healing outcome 



as was confirmed by in vivo animal experiments in the literature 47. Another example, which is closer 
to clinical application, is given by Valente et al. who investigated the sensitivity of patient-specific 
model predictions (i.e joint angles, joint moments, muscle and joint contact forces) during walking to 
the uncertainties in the identification of body landmark positions, maximum muscle tension and 
musculotendon geometry 48. They concluded that the patient-specific models are not markedly 
sensitive to the parameter identification, depending on the intended application of the model 48.   
 
The second barrier is represented by the limited technologies available to measure the key patient-
specific aspects. A lot of progress has been made concerning patient-specific FE modeling of bones, 
as reviewed by Poelert et al. 49. Indeed, with current imaging modalities such as MRI and CT, the 
bone geometry can be relatively easily obtained. Moreover, power laws exist to correlate the bone 
density, obtained from the CT readout, to Young’s moduli thereby assigning the patient-specific 
material properties to every element. Difficulties are however associated with the determination of 
the in vivo loading conditions since there exists no simple method to non-invasively measure the 
muscle and joint reaction forces 49. Therefore, forces are currently indirectly determined from 
musculoskeletal models. In order to provide mechano- and bioregulatory models with more in vivo 
quantitative data on cellular properties (e.g. proliferation rate), the patient-specific (biological) host 
environment, the spatial and temporal distribution of cells, growth factors and tissues and the 
mechanical regulation thereof, novel tools will need to be developed since adequate technologies 
are currently inexistent. According to a recent review of Pountos et al., none of the existing 
biomarkers can be recommended for routine clinical use to assess the progression of fracture 
healing although some of the investigated biomarkers (e.g. ALP, TGF-β1, VEGF, BMP-2) might be 
indicative of distinctive processes occurring during fracture healing (e.g. proliferation, 
differentiation, matrix production) 50. Calori et al. have combined several risk factors (e.g. smoking, 
osteoporosis, gap size) into a Non-Union Scoring System (NUSS) which provides an index of severity 
(0-100 points) and classifies patients in four treatment groups 51. As such, appropriate biomarkers 
and NUSS-scores can potentially provide an important input for the parameter determination and 
validation of computational models. Another promising technique is intravital microscopy (IVM) 
which allows a dynamic, non-invasive and high resolution visualization of the region of interest 52,53. 
 
A third reason for the limited quantitative information can be found in the clinical adoption of the 
(novel) measurement technologies. Firstly, there exists a gap between the technologies available to 
monitor and quantify the (patho)physiological phenomena in a research setting with respect to daily 
clinical practice. In a research context a detailed 3D patient-specific anatomy can for example be 
derived from advanced 3D imaging methods like CT and MRI, whereas conventional 2D X-ray images 
are still the method of choice in daily orthopedic practice since they can be obtained through a fast 
and inexpensive procedure. In order to acquire the 3D geometries existing CT and MRI imaging 
modalities should become part of routine diagnosis and therapy planning in orthopedics whereby 
the additional imaging costs are predicted to be compensated by the large amount of costs savings 
that an improved in silico designed treatment presents (see further). Alternatively, novel tools can 
be developed to extract additional information from existing 2D X-ray images. The latter approach 
has been followed by Ehlke et al. who maximize the correspondence between a virtual X-ray 
projection derived from a 3D deformable tetrahedral mesh and the anatomy depicted in a clinical X-
ray 54. By using a computational efficient projection algorithm, they are able to reconstruct 3D 
models of patient-specific bone shapes from a single or few X-ray images 54. Similar approaches can 
also be used to determine the bone density distribution, necessary to populate the 
(bio)mechanoregulatory models with patient-specific material properties.  
Secondly, during clinical imaging or sensing examinations, often only limited information is acquired. 
As such, dedicated examination protocols should be established in collaboration with modelling 
partners so that the necessary information for modelling purposes is acquired. Bode et al. have for 
example designed a clinical study protocol during which structural and functional data at the 



vascular level will be collected and the vascular access will be functionally evaluated during follow-
up 55. By implementing a strict imaging protocol, they aim to maximize the amount of demographical 
data in the difficult and heterogeneous target population 55. In this way the adopted strategy will 
allow for the calibration and validation of the computational models developed within the ARCH 
project (patient specific image-based computational modeling for improvement of short-term and 
long-term outcome of vascular access in patients on hemodialysis therapy) 55.    
Thirdly, the limited patient-specific information might be obtained from different systems, using 
different settings or different technologies 56. As such, protocols are needed that define how the 
data should be acquired and represented.  
Finally, patient specific data might be missing due to e.g. the invasiveness of the method or local 
unavailability. For these cases, machine learning methods can be used to learn from the remaining 
data set and predict missing values 57. Alternatively, atlases, built from patient-specific data in large 
databases 58,59, can provide subject-specific data through mapping procedures.  
 
Translation and clinical utilization of models 
The clinical adoption of patient-specific computational models will be highly dependent on the 
confidence clinicians feel to use them as a tool for personalized diagnosis and treatment. One of the 
key challenges will be to convince the health care providers of the technical capabilities and 
limitations through a thorough assessment of the computational models, including validation (i.e. 
the model predictions match the experimental reality), verification (i.e. the claimed outputs can be 
achieved for specified inputs by someone other than the model developer) as well as a sensitivity 
analysis (i.e. identification of the most influential model parameters) and a robustness analysis (i.e. 
evaluation of the deviation of the reference state due to external perturbations) 34.  
 
In a first step, computational models are generally corroborated with animal models (e.g. rat, sheep) 
(Table 1) since animal models allow for an extensive experimental characterization and 
quantification. Clearly, a key requirement for this strategy to be successful is that the animal models 
correctly capture the key disease mechanisms present in the human patient 60–62. If not, an animal-
validated computational model will fail in a human patient although it was able to nicely predict the 
bone regeneration process in the respective animal model. Likewise, the underlying mechanisms 
captured in the computational models need to match those of the animal model and the human 
patient to increase the chances of a successful translation from animal-validated to patient-validated 
models. Moreover, if the disease mechanisms are conserved between animal and patient, an 
animal-validated mechanistic model can potentially assist in the clinical translation of an in silico 
designed therapy by recalibrating a number of parameter values (e.g. the geometry).  
In a second step, the most promising computational models should be evaluated in a limited number 
of patient-specific study cases. Subsequently, a larger retrospective validation can be performed, 
although the existing retrospective data are often insufficient, improper for the modelling purposes 
or incomplete. As such, the challenge of thorough statistical (retrospective) validation and sensitivity 
analysis is intimately tied to the availability of patient-specific data, a key challenge that was 
discussed above. Alternatively or as a second stage, thorough prospective investigations can be 
performed using dedicated clinical trial protocols. A few good examples do exist such as the study by  
Trabelsi et al. (2011) who validated patient-specific finite element models of human cadaver femurs 
based on quantitative computer tomography in a double-blinded manner by biomechanical in vitro 
experiments performed in two different research institutes 63. A single leg loading configuration was 
used to determine the strains and local displacements on the bone surface as well as the axial 
stiffness 63. They demonstrated an excellent agreement between the in silico and in vitro results, 
highlighting the advanced stage of the computational model 63.  
 
After a thorough assessment of the technical and clinical capabilities of the computational models, 
clear improvements in health outcome measures and economic benefits should be demonstrated. 



Many techniques and tools are available within the field of health economics to aid in such an 
analysis (e.g. cost-minimization analysis, cost-effectiveness analysis, cost-utility analysis and cost-
benefit analysis) 64. A multilevel generic methodological framework to assess both the clinical and 
socio-economic impact of biomedical computational models in specific was developed by Thiel et al. 
65. When applying this framework to the predictive computational models for osteoporosis 
developed during the Osteoporotic Virtual Physiological Human Project (VPHOP), Thiel et al. 
conclude that the extra costs needed to implement the VPHOP framework are by far compensated 
by the large amount of costs savings that the improved fracture risk prognosis of VPHOP presents 66.   
 
Finally, following acceptance by the clinicians and other health care professionals, the computational 
models can be integrated in the hospital workflow. In order to facilitate this transition, attention 
needs to be paid to the usability of the models including a user-friendly interface and clinically 
relevant calculation times. 
 

Opportunities  
Computational models hold great promise to improve patient-specific treatment and reduce the 
associated health care costs. Moreover, as ethical and economic considerations increasingly 
challenge in vitro and in vivo methods, computational models will play a critical role in the 
replacement, reduction and refinement of animal testing. However, computational models need to 
take several steps before they can be adopted in clinical practice. Figure 1 schematically summarizes 
the roadmap of this clinical translation process, including the Technology Readiness Levels (TRL) 
which are typically used to assess the maturity of novel technologies. From Table 1 it can be noted 
that the usage of computational models as a research tool is growing steadily (small and large animal 
corroboration, TRL 5) whereas their use in clinical practice is very limited (TRL 9). A nice example of 
patient-specific implant solutions for orthopedic bone and joint reconstruction surgery is described 
by Delport et al.. This proven technology, marketed by Mobelife (Belgium) comprises three highly 
automated steps. First, the bony structures are presented with advanced 3D image processing 
techniques. Second, a patient-specific implant is designed, including a pre-operative planning that 
will be transferred into surgery using jig guiding technology (Materialise, Belgium). In a last step, the 
design is evaluated with a patient-specific finite element model that accounts for patient-specific 
bone quality and thickness as well as individualized muscle attachments and muscle and joint forces 
67. 
 
Besides aiding in the identification of novel treatment strategies or surgical planning, in silico models 
have also been accepted by the US Food and Drug Administration (FDA) as substitutes to animal 
trials in the preclinical testing phase. Kovatchev et al. present for example a system for in silico 
testing of control algorithms linking continuous glucose modeling to insulin delivery in an artificial 
pancreas 68. Zhao et al. also review the use of PBPK models in regulatory decision making 69. They 
conclude that computational models can facilitate the decision making concerning the need for 
specific clinical pharmacological studies, specific study designs and the appropriate labeling language 
69.  
 
Conclusion 

Recent advances in fracture management, including better protocols, more strict patient follow-up 
and improvements in hardware as well as surgical techniques have contributed to a better 
prognosis, even in complex fractures 35. However, the treatment of for example atrophic non-unions, 
characterized by a severely hampered biological support for bone healing, or of osteoporotic 
fractures, characterized by limited fixation capabilities due to a poor bone quality, continues to 
represent a therapeutic challenge. In order to find clinically relevant solutions for these complex 
orthopedic cases a combined in vitro, in vivo and in silico research approach is imperative. Indeed,  



current computational models of bone regeneration hold great promise to improve our fundamental 
understanding of impaired bone healing and design novel treatment strategies. Unfortunately, the 
translation of computational models from bench to bed side has been hampered by a number of 
barriers such as the mismatch between the open clinical questions and the current modelling 
efforts, the scarcity of patient-specific quantitative data and the lack of adequate model validation. 
Further research is required to overcome these challenges so that computational models of bone 
regeneration can reach their true potential, resulting in the advancement of individualized care and 
reduction of the associated health care costs.  
 

Figure captions 

Figure 1: Roadmap for the clinical translation of computational models of bone regeneration. On the 
left the well-known TRL (technology readiness levels) are indicated 70.   
 

 



Acknowledgements 

Aurélie Carlier is a post-doctoral research fellow of the Research Foundation Flanders (FWO-

Vlaanderen). The authors gratefully acknowledge support from the BOF-KU Leuven GOA project 

3M120209 and the European Research Council under the European Union's Seventh Framework 

Programme (FP7/2007-2013)/ERC Grant Agreement n° 279100 and 308223). The work is part of 

Prometheus, the Leuven Research and Development Division of Skeletal Tissue Engineering of the 

Katholieke Universiteit Leuven: www.kuleuven.be/Prometheus. 

 

Tables 

http://www.kuleuven.be/Prometheus


 modeling mechanics biology clinical 
translation 

 model 
type 

scale  dimension time 
point 
evaluati
on 

material 
description 

biophysical 
stimuli 

cells growth 
factors 

angio- 
genesis 

tissue 
growth 

nutrients 
oxygen 

healing  
phases 

 

Carter et 
al. 
(1998)71 

PDE  tissue 2D+  
(axi-
symmetric) 

single linear  
elastic 

principal 
tensile and 
hydrostatic 
stress 

     reparative  
phase 

mouse 
corroboration 

Claes et al. 
(1999)72 

PDE  tissue 2D+  
(axi-
symmetric) 

single linear  
elastic  
and hyper- 
elastic 

principal 
strain and 
hydrostatic 
pressure 

     reparative  
phase 

sheep  
corroboration 

Ament 
(2000)73 

PDE, 
fuzzy 
logic  

tissue 2D+  
(axi-
symmetric) 

adaptive linear  
elastic 

SED fuzzy 
logic 

     reparative, 
remodelling 
phase 

sheep  
corroboration 

Bailon-
Plaza et al. 
(2003)74 

PDE  tissue 2D+ 
(axi-
symmetric) 

adaptive linear  
elastic 

deviatoric 
strain and 
dilatational 
strain 

MSC
CC 
OB 

CGGF 
OGGF 

   reparative  
phase 

 

Gomez-
Benito et 
al. (2005)19 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive linear  
elastic 

second 
invariant of 
the 
deviatoric 
strain tensor 

MSC
CC 
FB 
OB 

  volume 
growth 

 reparative, 
remodelling 
phase 

sheep  
corroboration 
human prediction 

Shefelbine 
et al. 
(2005)75 

PDE, 
fuzzy 
logic  

tissue 3D adaptive linear 
elastic 

octahedral 
shear strain, 
hydrostatic 
strain 

  fuzzy 
logic 

  reparative, 
remodelling 
phase 

 

Santoni et 
al. (2007)29 

PDE tissue 3D single linear 
elastic 

       sheep 
corroboration 
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 model 
type 

scale  dimension time 
point 
evaluati
on 

material 
description 

biophysical 
stimuli 

cells growth 
factors 

angio- 
genesis 

tissue 
growth 

nutrients 
oxygen 

healing  
phases 

 

Andreykiv 
et al. 
(2008)76 

PDE  tissue 2D+ 
(axi-
symmetric) 

adaptive poro- 
elastic 

shear strain 
and fluid flow 

MSC
FB 
CC 
OB 

    reparative  
phase 

sheep  
corroboration 

Isaksson et 
al. (2008)77 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive poro- 
elastic 

shear strain 
and fluid flow 

MSC
FB 
CC 
OB 

    reparative  
phase 

non-union 
prediction 

Geris et al. 
(2008)78 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive poro- 
elastic 

fluid flow MSC
FB 
CC 
OB 

CGGF 
OGGF 
VEGF 

vascular 
matrix 

  reparative  
phase 

rat corroboration 
non-union 
prediction 

Chen et al. 
(2009)17 
Simon et 
al. (2011)18 

PDE, 
fuzzy 
logic 

tissue 2D+ 
(axi-
symmetric) 

adaptive linear  
elastic 

dilational , 
distortional 
strain 

  vascular 
matrix 

volume 
growth 

nutrient reparative  
phase 

sheep  
corroboration 
non-union 
prediction 

Wehner et 
al. (2010)79 

PDE, 
fuzzy 
logic 

tissue 3D adaptive linear  
elastic 

volumetric, 
distortional 
strain 

  vascular 
matrix, 
perfusion 

  reparative  
phase 

human  
corroboration 
human prediction 

Reina-
Romo et al. 
(2009-
2011)25–28 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive poro-
elastic 

principal 
strain and 
hydrostatic 
pressure 

MSC  vasculariz
ation 

  reparative 
phase 

sheep  
corroboration 
distraction 
osteogenesis 

Byrne et al. 
(2011)80 

PDE organ 3D adaptive biphasic 
poroelastic 

shear strain 
and fluid flow 

MSC
FB 
CC 
OB 

    reparative 
and 
remodelling 
phase 

human  
corroboration 
human prediction 



 modeling mechanics biology clinical 
translation 

 model 
type 

scale  dimension time 
point 
evaluati
on 

material 
description 

biophysical 
stimuli 

cells growth 
factors 

angio- 
genesis 

tissue 
growth 

nutrients 
oxygen 

healing  
phases 

 

Boccaccio 
et al. 
(2012)24 

PDE, 
fuzzy 
logic 

tissue 
cell 

3D adaptive biphasic 
poroelastic 

octahedral 
shear strain, 
hydrostatic 
strain 

     reparative 
phase, 
remodeling 
phase 

human prediction 

Vetter et 
al. (2012)81 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive linear  
elastic 

principal, 
shear, 
volumetric, 
octahedral 
shear strain 

‘biol
ogic
al 
pote
ntial’ 

‘biologic
al 
potentia
l’ 

‘biological 
potential’ 

  reparative  
phase 

sheep 
corroboration 

Burke et al. 
(2012)30 

PDE tissue 2D+ 
(axi-
symmetric) 

adaptive biphasic deviatoric 
strain 

  vascular 
matrix 

 oxygen reparative, 
remodelling 
phase 

sheep 
corroboration 

Peiffer et 
al. 
(2011)16,16,8

2,82,82,83 

PDE, 
ABM 

tissue 
cell 
intra- 
cellu-
lar 

2D adaptive   MSC
FB 
CC 
OB 

GF 
VEGF 

EC  oxygen reparative  
phase 

rat corroboration 
non-union 
prediction 

Moazen et 
al. (2012)22 

PDE tissue 3D single isotropic        human 
corroboration 
human prediction 

Nasr et al. 
(2013)21 

PDE tissue 3D adaptive isotropic, 
poroelastic 

octahedral 
shear strain, 
interstitial 
fluid velocity 
 
 
 

     reparative 
phase 

human 
predictions 
large defect 



 

Table 1 : Summary of computational models of bone tissue regeneration, indicating their major constituents. (PDE, partial differential equation; SED, 

strain energy density; GF, growth factor; MSC, mesenchymal stem cell; FB, fibroblast; CC, chondrocyte; OB, osteoblast; EC, endothelial cell; CGGF, 

chondrogenic growth factor; OGGF, osteogenic growth factor; VEGF, vascular endothelial growth factor; EC, endothelial cell; BMP, bone morphogenetic 

protein.) 

 

 

 

 

 modeling mechanics biology clinical 
translation 

 model 
type 

scale  dimension time 
point 
evaluati
on 

material 
description 

biophysical 
stimuli 

cells growth 
factors 

angio- 
genesis 

tissue 
growth 

nutrients 
oxygen 

healing  
phases 

 

Nassiri et 
al. (2012)23 

PDE  tissue 3D  linear 
elastic, 
isotropic 

       human prediction 
large defect 

Sun et al. 
(2013)15 

PDE tissue 
cell 
intra-
cellu-
lar 
 

3D adaptive   MSC 
OB 
pre-
OB 

BMP 
VEGF 
Wnt 
ligands 

EC  oxygen reparative 
phase 

in vitro 
corroboration 

Moore et 
al. (2014)31 

PDE tissue 3D adaptive linear 
elastic 

mean axial 
normal strain 

MSC 
CC 
OB 

BMP    reparative  
phase 

sheep 
corroboration 



Reference List 

 

 1.  Einhorn TA The cell and molecular biology of fracture healing. Clinical Orthopaedics and 
Related Research 1998, S7-S21. 

 2.  Bhandari M, Jain AK Bone stimulators: Beyond the black box. Indian J Orthop 2009, 43: 109-
110. 10.4103/0019-5413.50842 [doi]. 

 3.  Mills LA, Simpson AH The relative incidence of fracture non-union in the Scottish population 
(5.17 million): a 5-year epidemiological study. BMJ Open 2013, 3. bmjopen-2012-
002276 [pii];10.1136/bmjopen-2012-002276 [doi]. 

 4.  Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A Incidence and 
economic burden of osteoporosis-related fractures in the United States, 2005-2025. 
J Bone Miner Res 2007, 22: 465-475. 10.1359/jbmr.061113 [doi]. 

 5.  Fong K, Truong V, Foote CJ, Petrisor B, Williams D, Ristevski B, Sprague S, Bhandari M 
Predictors of nonunion and reoperation in patients with fractures of the tibia: an 
observational study. Bmc Musculoskeletal Disorders 2013, 14. 

 6.  Dormans JP, Fisher RC, Pill SG Orthopaedics in the developing world: present and future 
concerns. J Am Acad Orthop Surg 2001, 9: 289-296. 

 7.  Roberts TT, Rosenbaum AJ Bone grafts, bone substitutes and orthobiologics The bridge 
between basic science and clinical advancements in fracture healing. Organogenesis 
2012, 8: 114-124. 

 8.  Claes L, Recknagel S, Ignatius A Fracture healing under healthy and inflammatory conditions. 
Nat Rev Rheumatol 2012, 8: 133-143. nrrheum.2012.1 [pii];10.1038/nrrheum.2012.1 
[doi]. 

 9.  Marsh D Concepts of fracture union, delayed union, and nonunion. Clin Orthop Relat Res 
1998, S22-S30. 

 10.  Dimitriou R, Jones E, McGonagle D, Giannoudis PV Bone regeneration: current concepts and 
future directions. BMC Med 2011, 9: 66. 1741-7015-9-66 [pii];10.1186/1741-7015-9-
66 [doi]. 

 11.  Isaksson H Recent advances in mechanobiological modeling of bone regeneration. 
Mechanics Research Communications 2012, 42: 22-31. 

 12.  Pivonka P, Dunstan CR Role of mathematical modeling in bone fracture healing. BoneKEy Rep 
2012, 1. 10.1038/bonekey.2012.221. 

 13.  Geris L, Gerisch A, Schugart RC Mathematical modeling in wound healing, bone regeneration 
and tissue engineering. Acta Biotheor 2010, 58: 355-367. 10.1007/s10441-010-9112-
y [doi]. 

 14.  Geris L Regenerative orthopaedics: in vitro, in vivo and in silico. International Orthopaedics 
(SICOT) 2014, 38: 1771-1778. 



 15.  Sun XQ, Kang YQ, Bao JG, Zhang YY, Yang YZ, Zhou XB Modeling vascularized bone 
regeneration within a porous biodegradable CaP scaffold loaded with growth 
factors. Biomaterials 2013, 34: 4971-4981. 

 16.  Carlier A, Geris L, Gastel NV, Carmeliet G, Oosterwyck HV Oxygen as a critical determinant of 
bone fracture healing-A multiscale model. J Theor Biol 2014, 365C: 247-264. S0022-
5193(14)00601-8 [pii];10.1016/j.jtbi.2014.10.012 [doi]. 

 17.  Chen G, Niemeyer F, Wehner T, Simon U, Schuetz MA, Pearcy MJ, Claes LE Simulation of the 
nutrient supply in fracture healing. J Biomech 2009, 42: 2575-2583. S0021-
9290(09)00391-1 [pii];10.1016/j.jbiomech.2009.07.010 [doi]. 

 18.  Simon U, Augat P, Utz M, Claes L A numerical model of the fracture healing process that 
describes tissue development and revascularisation. Comput Methods Biomech 
Biomed Engin 2011, 14: 79-93. 929761607 [pii];10.1080/10255842.2010.499865 
[doi]. 

 19.  Gomez-Benito MJ, Garcia-Aznar JM, Kuiper JH, Doblare M Influence of fracture gap size on 
the pattern of long bone healing: a computational study. J Theor Biol 2005, 235: 105-
119. S0022-5193(05)00003-2 [pii];10.1016/j.jtbi.2004.12.023 [doi]. 

 20.  Taljanovic MS, Jones MD, Ruth JT, Benjamin JB, Sheppard JE, Hunter TB Fracture fixation. 
Radiographics 2003, 23: 1569-1590. 10.1148/rg.236035159 [doi];23/6/1569 [pii]. 

 21.  Nasr, S., Hunt, S., and Duncan, N. Effect of screw position on bone tissue differentiation 
within a fixed femoral fracture. Journal of Biomedical Science and Engineering 2013, 
6: 71-83. 10.4236/jbise.2013.612A009. 

 22.  Moazen M, Jones AC, Leonidou A, Jin ZM, Wilcox RK, Tsiridis E Rigid versus flexible plate 
fixation for periprosthetic femoral fracture-Computer modelling of a clinical case. 
Medical Engineering & Physics 2012, 34: 1041-1048. 

 23.  Nassiri M, MacDonald B, O'Byrne JM Locking compression plate breakage and fracture non-
union: a finite element study of three patient-specific cases. European Journal of 
Orthopaedic Surgery and Traumatology 2012, 22: 275-281. 

 24.  Boccaccio A, Kelly DJ, Pappalettere C A model of tissue differentiation and bone remodelling 
in fractured vertebrae treated with minimally invasive percutaneous fixation. 
Medical & Biological Engineering & Computing 2012, 50: 947-959. 

 25.  Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M Growth mixture 
model of distraction osteogenesis: effect of pre-traction stresses. Biomechanics and 
Modeling in Mechanobiology 2010, 9: 103-115. 

 26.  Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M Modeling 
distraction osteogenesis: analysis of the distraction rate. Biomechanics and 
Modeling in Mechanobiology 2009, 8: 323-335. 

 27.  Reina-Romo E, Gomez-Benito MJ, Dominguez J, Niemeyer F, Wehner T, Simon U, Claes LE 
Effect of the fixator stiffness on the young regenerate bone after bone transport: 
Computational approach. Journal of Biomechanics 2011, 44: 917-923. 



 28.  Reina-Romo E, Gomez-Benito MJ, Garcia-Aznar JM, Dominguez J, Doblare M Modeling 
distraction osteogenesis: analysis of the distraction rate. Biomechanics and 
Modeling in Mechanobiology 2009, 8: 323-335. 

 29.  Santoni BG, Womack WJ, Wheeler DL, Puttlitz CA A mechanical and computational 
investigation oil the effects of conduit orientation on the strength of massive bone 
allografts. Bone 2007, 41: 769-774. 

 30.  Burke DP, Kelly DJ Substrate Stiffness and Oxygen as Regulators of Stem Cell Differentiation 
during Skeletal Tissue Regeneration: A Mechanobiological Model. Plos One 2012, 7: 
e40737. 10.1371/journal.pone.0040737 [doi];PONE-D-12-01592 [pii]. 

 31.  Moore SR, Saidel GM, Knothe U, Knothe Tate ML Mechanistic, mathematical model to 
predict the dynamics of tissue genesis in bone defects via mechanical feedback and 
mediation of biochemical factors. PLoS Comput Biol 2014, 10: e1003604. 
10.1371/journal.pcbi.1003604 [doi];PCOMPBIOL-D-13-01236 [pii]. 

 32.  Geris L, Reed AA, Vander SJ, Simpson AH, Van OH Occurrence and treatment of bone 
atrophic non-unions investigated by an integrative approach. PLoS Comput Biol 
2010, 6: e1000915. 10.1371/journal.pcbi.1000915 [doi]. 

 33.  Carlier A, van GN, Geris L, Carmeliet G, Van OH Size does matter: an integrative in vivo-in 
silico approach for the treatment of critical size bone defects. PLoS Comput Biol 
2014, 10: e1003888. 10.1371/journal.pcbi.1003888 [doi];PCOMPBIOL-D-14-00735 
[pii]. 

 34.  Díaz, V., Viceconti, M., Stroetmann, V., and Kalra, D. Roadmap for the Digital Patient 
2013,Discipulus, FP7/2007-2013/n°288143, http://www.digital-patient.net. 

 35.  Gomez-Barrena E, Rosset P, Lozano D, Stanovici J, Ermthaller C, Gerbhard F Bone fracture 
healing: Cell therapy in delayed unions and nonunions. Bone 2014. S8756-
3282(14)00296-8 [pii];10.1016/j.bone.2014.07.033 [doi]. 

 36.  Rothberg D, Lee M Internal Fixation of Osteoporotic Fractures. Curr Osteoporos Rep 2015, 
13: 16-21. 

 37.  Bak B, Andreassen TT The effect of aging on fracture healing in the rat. Calcif Tissue Int 1989, 
45: 292-297. 

 38.  Day SM, DeHeer DH Reversal of the detrimental effects of chronic protein malnutrition on 
long bone fracture healing. J Orthop Trauma 2001, 15: 47-53. 

 39.  Schindeler A, Little DG Recent insights into bone development, homeostasis, and repair in 
type 1 neurofibromatosis (NFI). Bone 2008, 42: 616-622. 

 40.  Nikolaou VS, Efstathopoulos N, Kontakis G, Kanakaris NK, Giannoudis PV The influence of 
osteoporosis in femoral fracture healing time. Injury 2009, 40: 663-668. S0020-
1383(08)00495-6 [pii];10.1016/j.injury.2008.10.035 [doi]. 

 41.  Stinchfield FE, Sankaran B, Samilson R The Effect of Anticoagulant Therapy on Bone Repair. 
Journal of Bone and Joint Surgery-American Volume 1956, 38: 270-282. 

http://www.digital-patient.net/


 42.  Scolaro JA, Schenker ML, Yannascoli S, Baldwin K, Mehta S, Ahn J Cigarette Smoking 
Increases Complications Following Fracture. Journal of Bone and Joint Surgery-
American Volume 2014, 96A: 674-681. 

 43.  Altman RD, Latta LL, Keer R, Renfree K, Hornicek FJ, Banovac K Effect of nonsteroidal 
antiinflammatory drugs on fracture healing: a laboratory study in rats. J Orthop 
Trauma 1995, 9: 392-400. 

 44.  Sabalic S, Kodvanj J, Pavic A Comparative study of three models of extra-articular distal 
humerus fracture osteosynthesis using the finite element method on an 
osteoporotic computational model. Injury 2013, 44 Suppl 3: S56-S61. S0020-
1383(13)70200-6 [pii];10.1016/S0020-1383(13)70200-6 [doi]. 

 45.  Ode A, Duda GN, Geissler S, Pauly S, Ode JE, Perka C, Strube P Interaction of Age and 
Mechanical Stability on Bone Defect Healing: An Early Transcriptional Analysis of 
Fracture Hematoma in Rat. Plos One 2014, 9. 

 46.  Geris, L. and Gomez-Cabrero, D. (2014) Uncertainty in biology: a computational modeling 
approach.  

 47.  Isaksson H, van Donkelaar CC, Huiskes R, Yao J, Ito K Determining the most important cellular 
characteristics for fracture healing using design of experiments methods. J Theor Biol 
2008, 255: 26-39. S0022-5193(08)00398-6 [pii];10.1016/j.jtbi.2008.07.037 [doi]. 

 48.  Valente G, Pitto L, Testi D, Seth A, Delp SL, Stagni R, Viceconti M, Taddei F Are Subject-
Specific Musculoskeletal Models Robust to the Uncertainties in Parameter 
Identification? Plos One 2014, 9: e112625. doi:10.1371/journal.pone.0112625. 

 49.  Poelert S, Valstar E, Weinans H, Zadpoor AA Patient-specific finite element modeling of 
bones. Proceedings of the Institution of Mechanical Engineers Part H-Journal of 
Engineering in Medicine 2013, 227: 464-478. 

 50.  Pountos I, Georgouli T, Pneumaticos S, Giannoudis PV Fracture non-union: Can biomarkers 
predict outcome? Injury 2013, 44: 1725-1732. S0020-1383(13)00397-5 
[pii];10.1016/j.injury.2013.09.009 [doi]. 

 51.  Calori GM, Colombo M, Mazza EL, Mazzola S, Malagoli E, Marelli N, Corradi A Validation of 
the Non-Union Scoring System in 300 long bone non-unions. Injury 2014, 45, 
Supplement 6: S93-S97. 

 52.  Rucker M, Laschke MW, Junker D, Carvalho C, Schramm A, Mulhaupt R, Gellrich NC, Menger 
MD Angiogenic and inflammatory response to biodegradable scaffolds in dorsal 
skinfold chambers of mice. Biomaterials 2006, 27: 5027-5038. 

 53.  Schumann P, Tavassol F, Lindhorst D, Stuehmer C, Bormann KH, Kampmann A, Mulhaupt R, 
Laschke MW, Menger MD, Gellrich NC, Rucker M Consequences of seeded cell type 
on vascularization of tissue engineering constructs in vivo. Microvascular Research 
2009, 78: 180-190. 

 54.  Ehlke M, Ramm H, Lamecker H, Hege HC, Zachow S Fast generation of virtual X-ray images 
for reconstruction of 3D anatomy. IEEE Trans Vis Comput Graph 2013, 19: 2673-
2682. 10.1109/TVCG.2013.159 [doi]. 



 55.  Bode A, Caroli A, Huberts W, Planken N, Antiga L, Bosboom M, Remuzzi A, Tordoir J Clinical 
study protocol for the ARCH project - computational modeling for improvement of 
outcome after vascular access creation. J Vasc Access 2011, 12: 369-376. 60D2485C-
CC0E-4CBF-B3B2-BA3B5417E2DD [pii];10.5301/JVA.2011.8382 [doi]. 

 56.  Lu YT, Engelke K, Puschel K, Morlock MM, Huber G Influence of 3D QCT scan protocol on the 
QCT-based finite element models of human vertebral cancellous bone. Medical 
Engineering & Physics 2014, 36: 1069-1073. 

 57.  Khan, A., Doucette, J. A., Cohen, R., and Lizotte, D. J. (12-12-2012) Integrating Machine 
Learning Into a Medical Decision Support System to Address the Problem of Missing 
Patient Data. Machine Learning and Applications (ICMLA), 2012 11th International 
Conference on 1: 454-457. 

 58.  Parnell SE, Wall C, Weinberger E Interactive digital atlas of skeletal surveys for common 
skeletal dysplasias. Pediatric Radiology 2013, 43: 803-813. 

 59.  Carballido-Gamio J, Folkesson J, Karampinos DC, Baum T, Link TM, Majumdar S, Krug R 
Generation of an Atlas of the Proximal Femur and Its Application to Trabecular Bone 
Analysis. Magnetic Resonance in Medicine 2011, 66: 1181-1191. 

 60.  Garcia P, Histing T, Holstein JH, Klein M, Laschke MW, Matthys R, Ignatius A, Wildemann B, 
Lienau J, Peters A, Willie B, Duda G, Claes L, Pohlemann T, Menger MD Rodent 
animal models of delayed bone healing and non-union formation: a comprehensive 
review. Eur Cell Mater 2013, 26: 1-12. vol026a01 [pii]. 

 61.  Histing T, Garcia P, Holstein JH, Klein M, Matthys R, Nuetzi R, Steck R, Laschke MW, Wehner 
T, Bindl R, Recknagel S, Stuermer EK, Vollmar B, Wildemann B, Lienau J, Willie B, 
Peters A, Ignatius A, Pohlemann T, Claes L, Menger MD Small animal bone healing 
models: standards, tips, and pitfalls results of a consensus meeting. Bone 2011, 49: 
591-599. S8756-3282(11)01085-4 [pii];10.1016/j.bone.2011.07.007 [doi]. 

 62.  Reifenrath J, Angrisani N, Lalk M, Besdo S Replacement, refinement, and reduction: 
necessity of standardization and computational models for long bone fracture repair 
in animals. J Biomed Mater Res A 2014, 102: 2884-2900. 10.1002/jbm.a.34920 [doi]. 

 63.  Trabelsi N, Yosibash Z, Wutte C, Augat P, Eberle S Patient-specific finite element analysis of 
the human femur-A double-blinded biomechanical validation. Journal of 
Biomechanics 2011, 44: 1666-1672. 

 64.  Goeree R, Diaby V Introduction to health economics and decision-making: Is economics 
relevant for the frontline clinician? Best Pract Res Clin Gastroenterol 2013, 27: 831-
844. S1521-6918(13)00179-0 [pii];10.1016/j.bpg.2013.08.016 [doi]. 

 65.  Thiel R, Stroetmann KA, Stroetmann VN, Viceconti M Designing a socio-economic 
assessment method for integrative biomedical research: the Osteoporotic Virtual 
Physiological Human project. Stud Health Technol Inform 2009, 150: 876-880. 

 66.  Thiel R, Viceconti M, Stroetmann K Assessing biocomputational modelling in transforming 
clinical guidelines for osteoporosis management. Stud Health Technol Inform 2011, 
169: 432-436. 



 67.  Delport H, Mulier M, Gelaude F, Clijmans T Complex Acetabular Revision Using Computer-
Aided Planning for Patient-Specific Implant and Guide. Journal of Bone & Joint 
Surgery, British Volume 2012, 94-B: 40. 

 68.  Kovatchev BP, Breton M, Man CD, Cobelli C In silico preclinical trials: a proof of concept in 
closed-loop control of type 1 diabetes. J Diabetes Sci Technol 2009, 3: 44-55. 

 69.  Zhao P, Zhang L, Grillo JA, Liu Q, Bullock JM, Moon YJ, Song P, Brar SS, Madabushi R, Wu TC, 
Booth BP, Rahman NA, Reynolds KS, Gil BE, Lesko LJ, Huang SM Applications of 
physiologically based pharmacokinetic (PBPK) modeling and simulation during 
regulatory review. Clin Pharmacol Ther 2011, 89: 259-267. clpt2010298 
[pii];10.1038/clpt.2010.298 [doi]. 

 70.  by Freepik (http:, www.freepik.com) from (http:, and www.flaticon.com (2015) Title icons: 
broken bone / desktop computer / checklist on clipboard / medical-doctor-standing-
beside-x-ray_48633 / health-insurance-symbol-of-a-man-with-broken-arm_48956 / 
Sheep front / Mouse pet.  

 71.  Carter DR, Beaupre GS, Giori NJ, Helms JA Mechanobiology of skeletal regeneration. Clin 
Orthop Relat Res 1998, S41-S55. 

 72.  Claes LE, Heigele CA Magnitudes of local stress and strain along bony surfaces predict the 
course and type of fracture healing. J Biomech 1999, 32: 255-266. S0021-
9290(98)00153-5 [pii]. 

 73.  Ament C, Hofer EP A fuzzy logic model of fracture healing. J Biomech 2000, 33: 961-968. 
S002192900000049X [pii]. 

 74.  Bailon-Plaza A, van der Meulen MC Beneficial effects of moderate, early loading and adverse 
effects of delayed or excessive loading on bone healing. J Biomech 2003, 36: 1069-
1077. S0021929003001179 [pii]. 

 75.  Shefelbine SJ, Augat P, Claes L, Simon U Trabecular bone fracture healing simulation with 
finite element analysis and fuzzy logic. J Biomech 2005, 38: 2440-2450. S0021-
9290(04)00515-9 [pii];10.1016/j.jbiomech.2004.10.019 [doi]. 

 76.  Andreykiv A, van KF, Prendergast PJ Simulation of fracture healing incorporating 
mechanoregulation of tissue differentiation and dispersal/proliferation of cells. 
Biomech Model Mechanobiol 2008, 7: 443-461. 10.1007/s10237-007-0108-8 [doi]. 

 77.  Isaksson H, van Donkelaar CC, Huiskes R, Ito K A mechano-regulatory bone-healing model 
incorporating cell-phenotype specific activity. J Theor Biol 2008, 252: 230-246. 
S0022-5193(08)00050-7 [pii];10.1016/j.jtbi.2008.01.030 [doi]. 

 78.  Geris L, Gerisch A, Sloten JV, Weiner R, Oosterwyck HV Angiogenesis in bone fracture 
healing: a bioregulatory model. J Theor Biol 2008, 251: 137-158. S0022-
5193(07)00567-X [pii];10.1016/j.jtbi.2007.11.008 [doi]. 

 79.  Wehner T, Claes L, Niemeyer F, Nolte D, Simon U Influence of the fixation stability on the 
healing time--a numerical study of a patient-specific fracture healing process. Clin 
Biomech (Bristol , Avon ) 2010, 25: 606-612. S0268-0033(10)00066-5 
[pii];10.1016/j.clinbiomech.2010.03.003 [doi]. 

http://www.freepik.com/
http://www.flaticon.com/


 80.  Byrne DP, Lacroix D, Prendergast PJ Simulation of fracture healing in the tibia: 
mechanoregulation of cell activity using a lattice modeling approach. J Orthop Res 
2011, 29: 1496-1503. 10.1002/jor.21362 [doi]. 

 81.  Vetter A, Witt F, Sander O, Duda GN, Weinkamer R The spatio-temporal arrangement of 
different tissues during bone healing as a result of simple mechanobiological rules. 
Biomech Model Mechanobiol 2012, 11: 147-160. 10.1007/s10237-011-0299-x [doi]. 

 82.  Peiffer V, Gerisch A, Vandepitte D, Van Oosterwyck H, Geris L A hybrid bioregulatory model 
of angiogenesis during bone fracture healing. Biomech Model Mechanobiol 2011, 10: 
383-395. 10.1007/s10237-010-0241-7 [doi]. 

 83.  Carlier A, Geris L, van Gastel N, Carmeliet G, Van Oosterwyck H Oxgen as a critical 
determinant of bone fracture healing - a multiscale model. J Theor Biol 2014. 

 
 


