Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain: Combining Experimental and Computational Methods Unravels Differences in Driving Forces
[en] Positive allosteric modulation of the ionotropic glutamate receptor GluA2 presents a potential treatment of cognitive disorders, for example, Alzheimer’s disease. In the present study, we describe the synthesis, pharmacology, and thermodynamic studies of a series of monofluoro-substituted 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides. Measurements of ligand binding by isothermal titration calorimetry (ITC) showed similar binding affinities for the modulator series at the GluA2 LBD but differences in the thermodynamic driving forces. Binding of 5c (7-F) and 6 (no-F) is enthalpy driven, and 5a (5-F) and 5b (6-F) are entropy driven. For 5d (8-F), both quantities were equal in size. Thermodynamic integration (TI) and one-step perturbation (OSP) were used to calculate the relative binding affinity of the modulators. The OSP calculations had a higher predictive power than those from TI, and combined with the shorter total simulation time, we found the OSP method to be more effective for this setup. Furthermore, from the molecular dynamics simulations, we extracted the enthalpies and entropies, and along with the ITC data, this suggested that the differences in binding free energies are largely explained by the direct ligand-surrounding enthalpies. Furthermore, we used the OSP setup to predict binding affinities for a series of polysubstituted fluorine compounds and monosubstituted methyl compounds and used these predictions to characterize the modulator binding pocket for this scaffold of positive allosteric modulators.10.1021/ci500559b
Disciplines :
Pharmacy, pharmacology & toxicology Chemistry
Author, co-author :
Nørholm, Ann-Beth
Francotte, Pierre ; Université de Liège > Département de pharmacie > Chimie pharmaceutique
Goffin, Eric ; Université de Liège > Département de pharmacie > Chimie pharmaceutique
Botez-Pop, Iuliana
Danober, Laurence
Lestage, Pierre
Pirotte, Bernard ; Université de Liège > Département de pharmacie > Chimie pharmaceutique
Olsen, Lars
Oostenbrink, Chris
Language :
English
Title :
Thermodynamic Characterization of New Positive Allosteric Modulators Binding to the Glutamate Receptor A2 Ligand-Binding Domain: Combining Experimental and Computational Methods Unravels Differences in Driving Forces
Traynelis, S. F.; Wollmuth, L. P.; McBain, C. J.; Menniti, F. S.; Vance, K. M.; Ogden, K. K.; Hansen, K. B.; Yuan, H. J.; Myers, S. J.; Dingledine, R. Glutamate receptor ion channels: Structure, regulation, and function Pharmacol. Rev. 2010, 62, 405-496
Sobolevsky, A. I.; Rosconi, M. P.; Gouaux, E. X-ray structure, symmetry and mechanism of an AMPA-subtype glutamate receptor Nature 2009, 462, 745-756
Armstrong, N.; Gouaux, E. Mechanisms for activation and antagonism of an AMPA-sensitive glutamate receptor: Crystal structures of the GluR2 ligand binding core Neuron 2000, 28, 165-181
Jin, R. S.; Clark, S.; Weeks, A. M.; Dudman, J. T.; Gouaux, E.; Partin, K. M. Mechanism of positive allosteric modulators acting on AMPA receptors J. Neurosci. 2005, 25, 9027-9036
Sun, Y.; Olson, R.; Horning, M.; Armstrong, N.; Mayer, M.; Gouaux, E. Mechanism of glutamate receptor desensitization Nature 2002, 417, 245-253
Leavit, S.; Freire, E. Direct measurement of protein binding energetics by isothermal titration calorimetry Curr. Opin. Struct. Biol. 2001, 11, 560-566
Shirts, M. R.; Mobley, D. L.; Chodera, J. D. Alchemical free energy calculations: Ready for prime time? Annu. Rep. Comp. Chem. 2007, 3, 41-59
de Ruiter, A.; Oostenbrink, C. Free energy calculations of protein-ligand interactions Curr. Opin. Chem. Biol. 2011, 15, 547-552
Reinhardt, W. P.; Miller, M. A.; Amon, L. M. Why is it so difficult to simulate entropies, free energies, and their differences Acc. Chem. Res. 2001, 34, 607-614
Velazquez-Campoy, A.; Yoshiaki, K.; Freire, E. The binding energetics of first- and second-generation HIV-1 protease inhibitors: Implications for drug design Arch. Biochem. Biophys. 2001, 390, 169-175
Lai, B.; Nagy, G.; Garate, J. A.; Oostenbrink, C. Entropic and enthalpic contributions to stereospecific ligand binding from enhanced sampling methods J. Chem. Inf. Model. 2014, 54, 151-158
Reynolds, C. H.; Holloway, M. K. Thermodynamics of ligand binding and efficiency ACS Med. Chem. Lett. 2011, 2, 433-437
Ben-Naim, A.; Marcus, Y. Solvation thermodynamics of nonionic solutes J. Chem. Phys. 1984, 81, 2016-2027
van der Vegt, N. F. A.; van Gunsteren, W. F. Entropic contributions in co-solvent binding to hydrophobic solutes in water J. Phys. Chem. B 2004, 108, 1056-1064
Lai, B.; Oostenbrink, C. Binding free energy, energy and entropy calculations using simple model systems Theor. Chem. Acc. 2012, 131, 1272
Nørholm, A.-B.; Francotte, P.; Olsen, L.; Krintel, C.; Frydenvang, K.; Goffin, E.; Challal, S.; Danober, L.; Botez-Pop, I.; Lestage, P.; Pirotte, B.; Kastrup, J. S. Synthesis, pharmacological and structural characterization, and thermodynamic aspects of GluA2-positive allosteric modulators with a 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxide scaffold J. Med. Chem. 2013, 56, 8736-8745
Beveridge, D. L.; DiCapua, F. M. Free energy via molecular simulation: Applications to Chemical and Biomolecular Systems Annu. Rev. Biophys. Biophys. Chem. 1989, 18, 431-492
Oostenbrink, C. Free Energy Calculations from One-Step Perturbations. In Methods in Molecular Biology, Computational Drug Discovery and Design, Baron, R., Ed.; Humana Press: New York, 2012; Vol. 819, pp 487-499.
Francotte, P.; Goffin, E.; Fraikin, P.; Lestage, P.; Van Heugen, J. C.; Gillotin, F.; Danober, L.; Thomas, J. Y.; Chiap, P.; Caignard, D. H.; Pirotte, B.; de Tullio, P. New fluorinated 1,2,4-benzothiadiazine 1,1-dioxides: Discovery of an orally active cognitive enhancer acting through potentiation of the 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl) propionic acid receptors J. Med. Chem. 2010, 53, 1700-1711
Francotte, P.; Goffin, E.; Fraikin, P.; Graindorge, E.; Lestage, P.; Danober, L.; Challal, S.; Rogez, N.; Nosjean, O.; Caignard, D. H.; Pirotte, B.; de Tullio, P. Development of thiophenic analogues of benzothiadiazine dioxides as new powerful potentiators of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors J. Med. Chem. 2013, 56, 7838-7850
Lockhart, B.; Iop, F.; Closier, M.; Lestage, P. (S)-2,3-Dihydro- 3,4 cyclopentano-1,2,4-benzothiadiazine-1,1-dioxide: (S18986-1) a positive modulator of AMPA receptors enhances (S)-AMPA-mediated H-3 noradrenaline release from rat hippocampal and frontal cortex slices Eur. J. Pharmacol. 2000, 401, 145-153
Krintel, C.; Frydenvang, K.; Olsen, L.; Kristensen, M. T.; de Barrios, O.; Naur, P.; Francotte, P.; Pirotte, B.; Gajhede, M.; Kastrup, J. S. Thermodynamics and structural analysis of positive allosteric modulation of the ionotropic glutamate receptor GluA2 Biochem. J. 2012, 441, 173-178
Schmid, N.; Christ, C. D.; Christen, M.; Eichenberger, A. P.; van Gunsteren, W. F. Architecture, implementation and parallelisation of the GROMOS software for biomolecular simulation Comput. Phys. Commun. 2012, 183, 890-903
Eichenberger, A. P.; Allison, J. R.; Dolenc, J.; Geerke, D.; Horta, B. A. C.; Meier, K.; Oostenbrink, C.; Schmid, N.; Steiner, D.; Wang, D.; van Gunsteren, W. F. GROMOS++ software for the analysis of biomolecular simulation trajectories J. Chem. Theor. Comp. 2011, 7, 3379-3390
Reif, M. M.; Hünenberger, P. H.; Oostenbrink, C. New interaction parameters for charged amino acid side chains in the GROMOS force field J. Chem. Theor. Comp. 2012, 8, 3705-3723
Zagrovic, B.; van Gunsteren, W. F. Computational analysis of the mechanism and thermodynamics of inhibition of phosphodiesterase 5A by synthetic ligands J. Chem. Theor. Comp. 2007, 3, 301-311
Fioroni, M.; Burger, K.; Mark, A. E.; Roccatano, D. A new 2,2,2-trifluoroethanol model for molecular dynamics simulations J. Phys. Chem. B 2000, 104, 12347-12354
Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; DiNola, A.; Haak, J. R. Molecular-dynamics with coupling to an external bath J. Chem. Phys. 1984, 81, 3684-3690
Martyna, G.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics J. Chem. Phys. 1992, 97, 2635-2643
Koehler, J. E. H.; Saenger, W.; van Gunsteren, W. F. On the occurrence of three-centre hydrogen bonds in cyclodextrins in crystalline form and in aqueous solution: Comparison of neutron diffraction and molecular dynamics results J. Biomol. Struct. Dyn. 1988, 6, 181-198
Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical features Biopolymers 1983, 22, 2577-2637
Tembe, B. L.; McCammon, J. A. Ligand-receptor interactions Comput. Chem. 1984, 8, 281-283
Riniker, S.; Christ, C. D.; Hansen, H. S.; Hünenberger, P. H.; Oostenbrink, C.; Steiner, D.; van Gunsteren, W. F. Calculation of relative free rnergies for ligand-protein binding, solvation and conformational transitions using the GROMOS software J. Phys. Chem. B 2011, 115, 13570-13577
Beutler, T. C.; Mark, A. E.; van Schaik, R. C.; Gerber, P. R.; van Gunsteren, W. F. Avoiding singularities and numerical instabilities in free energy calculations based on molecular simulations Chem. Phys. Lett. 1994, 222, 529-539
Kirkwood, J. G. Statistical mechanics of fluid mixtures J. Chem. Phys. 1935, 3, 300-313
Torrie, G. M.; Valleau, J. P. Monte Carlo free energy estimates using non-Boltzmann sampling: Application to the sub-critical Lennard-Jones fluid Chem. Phys. Lett. 1974, 28, 578-581
Torrie, G. M.; Valleau, J. P. Nonphysical sampling distibutions in Monte Carlo free-energy estimation: Umbrella sampling J. Comput. Phys. 1977, 23, 187-199
Liu, H. Y.; Mark, A. E.; van Gunsteren, W. F. Estimating the relative free energy of different molecular states with respect to a single reference state J. Phys. Chem. 1996, 100, 9485-9494
Schäfer, H.; van Gunsteren, W. F.; Mark, A. E. Estimating relative free energies from a single ensemble: Hydration free energies J. Comput. Chem. 1999, 20, 1604-1617
Zwanzig, R. W. High-temperature equation of state by a perturbation method. I. Nonpolar gases J. Chem. Phys. 1954, 22, 1420-1426
Peter, C.; Oostenbrink, C.; van Dorp, A.; van Gunsteren, W. F. Estimating entropies from molecular dynamics simulations J. Chem. Phys. 2004, 120, 2652-2661
Meerwein, H.; Dittmar, G.; Gollner, R.; Hafner, K.; Mensch, F.; Steinfort, O. Untersuchungen uber aromatische diazoverbindungen 0.2. Verfahren zur herstellung aromatischer sulfonsaurechloride, eine neue modifikation der Sandmeyerschen reaktion Chem. Ber./Recl. 1957, 90, 841-852
Francotte, P.; Nørholm, A.-B.; Deva, T.; Olsen, L.; Frydenvang, K.; Goffin, E.; Fraikin, P.; De Tullio, P.; Challal, S.; Thomas, J.-Y.; Iop, F.; Louis, C.; Botez-Pop, I.; Lestage, P.; Danober, L.; Kastrup, J.; Pirotte, B. Positive allosteric modulators of 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionic acid (AMPA) receptors belonging to 4-cyclopropyl-3,4-dihydro-2H-1,2,4-pyridothiadiazine dioxides and diversely chloro-substituted 4-cyclopropyl-3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides J. Med. Chem. 2014, 57, 9539-9553
Cowen, M. S.; Beart, P. M. Cyclothiazide and AMPA receptor desensitization: Analyses from studies of AMPA-induced release of H-3-noradrenaline from hippocampal slices Br. J. Pharmacol. 1998, 123, 473-480
Shirts, M.; Mobley, D.; Brown, S. Free-Energy Calculations in Structure-Based Drug Design. In Drug Design: Structure- and Ligand-Based Approaches; Merz, K. M.; Ringe, D.;; Reynolds, C.H., Eds.; Cambridge University Press: New York, 2010; pp 61-86.