Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
Beckers, L.; Masset, J.; Hamilton, C.et al.
2015 • In Biochemical Engineering Journal, 98, p. 18-28
Biohydrogen; Clostridium butyricum; Dissolved hydrogen concentration; Hydrogen partial pressure; Mass transfer coefficient; Supersaturation; Batch reactors; Clostridium; Dissolution; Liquids; Mass transfer; Bio-hydrogen; Critical supersaturation; Different operating conditions; Dissolved hydrogen concentrations; Fermentative hydrogen production; Hydrogen partial pressures; Hydrogen production rate; Hydrogen production; Article; Bacteria (microorganisms)
Abstract :
[en] Fermentative hydrogen production has often been described as inhibited by its own gas production. In this work, hydrogen production by Clostridium butyricum was investigated in batch Biochemical Hydrogen Potential (BHP) tests and in a 2.5L anaerobic sequenced batch reactor (AnSBR) under different operating conditions regarding liquid-to-gas mass transfer. Through the addition of both stirring up to 400rpm and nitrogen sparging, the yields were enhanced from 1.6 to 3.1molH2molglucose -1 and the maximum hydrogen production rates from 140 to 278mLh-1. These original results were achieved with a pure Clostridium strain. They showed that hydrogen production was improved by a higher liquid-to-gas hydrogen transfer resulting in a lower dissolved hydrogen concentration in the culture medium and therefore in a lower bacterial inhibition. In addition, biohydrogen partitioning between the gas and the liquid phase did not conform to Henry's Law due to critical supersaturation phenomena up to seven-fold higher than the equilibrium conditions. Therefore, dissolved hydrogen concentration should be systematically measured instead of the headspace hydrogen partial pressure. A model was proposed to correlate H2 production yield and rate by the pure C. butyricum strain CWBI1009 with mass transfer coefficient KLa.
Research Center/Unit :
Centre Wallon de Biologie Industrielle
Disciplines :
Biotechnology Microbiology Energy Chemical engineering
Author, co-author :
Beckers, L.; Centre Wallon de Biologie Industrielle (CWBI), Département des Sciences de la Vie, Université de Liège, B40Liège, Belgium
Masset, J.; Centre Wallon de Biologie Industrielle (CWBI), Département des Sciences de la Vie, Université de Liège, B40Liège, Belgium
Hamilton, C.; Centre Wallon de Biologie Industrielle (CWBI), Département des Sciences de la Vie, Université de Liège, B40Liège, Belgium
Delvigne, Frank ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Toye, Dominique ; Université de Liège - ULiège > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques
Crine, Michel ; Université de Liège - ULiège > Département de chimie appliquée > Département de chimie appliquée
Thonart, Philippe ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Hiligsmann, Serge ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Language :
English
Title :
Investigation of the links between mass transfer conditions, dissolved hydrogen concentration and biohydrogen production by the pure strain Clostridium butyricum CWBI1009
Etude de la production d'hydrogène par les bactéries anaérobies chimiotrophes (dark-fermentation)
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique Action de Recherches concertées ARC 07/12 04- ULg- Communauté française FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture DGTRE - Région wallonne. Direction générale des Technologies, de la Recherche et de l'Énergie
Holladay J.D., Hu J., King D.L., Wang Y. An overview of hydrogen production technologies. Catal. Today 2009, 139:244-260.
Levin D.B., Chahine R. Challenges for renewable hydrogen production from biomass. Int. J. Hydrogen Energy 2010, 35:4962-4969.
Nath K., Das D. Improvement of fermentative hydrogen production: various approaches. Appl. Microbiol. Biotechnol. 2004, 65:520-529.
Hallenbeck P.C. Fermentative hydrogen production: principles, progress, and prognosis. Int. J. Hydrogen Energy 2009, 34:7379-7389.
Kothari R., Singh D.P., Tyagi V.V., Tyagi S.K. Fermentative hydrogen production - an alternative clean energy source. Renew. Sustain. Energy Rev. 2012, 16:2337-2346.
Kraemer J.T., Bagley D.M. Improving the yield from fermentative hydrogen production. Biotechnol. Lett. 2007, 29:685-695.
Hawkes F.R., Hussy I., Kyazze G., Dinsdale R., Hawkes D.L. Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int. J. Hydrogen Energy 2007, 32:172-184.
Junghare M., Subudhi S., Lal B. Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int. J. Hydrogen Energy 2012, 37:3160-3168.
Lee K.-S., Tseng T.-S., Liu Y.-W., Hsiao Y.-D. Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int. J. Hydrogen Energy 2012, 37:15556-15562.
Li Y.F., Ren N.Q., Chen Y., Zheng G.X. Ecological mechanism of fermentative hydrogen production by bacteria. Int. J. Hydrogen Energy 2007, 32:755-760.
Mandal B., Nath K., Das D. Improvement of biohydrogen production under decreased partial pressure of H-2 by Enterobacter cloacae. Biotechnol. Lett. 2006, 28:831-835.
Angenent L.T., Karim K., Al-Dahhan M.H., Domiguez-Espinosa R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 2004, 22:477-485.
Bastidas-Oyanedel J.R., Aceves-Lara C.A., Ruiz-Filippi G., Steyer J.P. Thermodynamic analysis of energy transfer in acidogenic cultures. Eng. Life Sci. 2008, 8:487-498.
Guwy A.J., Dinsdale R.M., Kim J.R., Massanet-Nicolau J., Premier G. Fermentative biohydrogen production systems integration. Bioresource Technol. 2011, 102:8534-8542.
Mu Y., Yu H.Q., Wang G. Evaluation of three methods for enriching H-2-producing cultures from anaerobic sludge. Enzyme Microb. Technol. 2007, 40:947-953.
Kim D.H., Han S.K., Kim S.H., Shin H.S. Effect of gas sparging on continuous fermentative hydrogen production. Int. J. Hydrogen Energy 2006, 31:2158-2169.
Mizuno O., Dinsdale R., Hawkes F.R., Hawkes D.L., Noike T. Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technol. 2000, 73:59-65.
Chou C.H., Wang C.W., Huang C.C., Lay J.J. Pilot study of the influence of stirring and pH on anaerobes converting high-solid organic wastes to hydrogen. Int. J. Hydrogen Energy 2008, 33:1550-1558.
Fontes Lima D.M., Zaiat M. The influence of the degree of back-mixing on hydrogen production in an anaerobic fixed-bed reactor. Int. J. Hydrogen Energy 2012, 37:9630-9635.
Lamed R.J., Lobos J.H., Su T.M. Effects of stirring and hydrogen on fermenation products of Clostridium thermocellum. Appl. Environ. Microbiol. 1988, 54:1216-1221.
Liang T.M., Cheng S.S., Wu K.L. Behavioral study on hydrogen fermentation reactor installed with silicone rubber membrane. Int. J. Hydrogen Energy 2002, 27:1157-1165.
Kataoka N., Miya A., Kiriyama K. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci. Technol. 1997, 36:41-47.
Arslan D., Steinbusch K.J.J., Diels L., De Wever H., Buisman C.J.N., Hamelers H.V.M. Effect of hydrogen and carbon dioxide on carboxylic acids patterns in mixed culture fermentation. Bioresource Technol. 2012, 118:227-234.
Clark I.C., Zhang R.H., Upadhyaya S.K. The effect of low pressure and mixing on biological hydrogen production via anaerobic fermentation. Int. J. Hydrogen Energy 2012, 37:11504-11513.
Kraemer J.T., Bagley D.M. Supersaturation of dissolved H-2 and CO-2 during fermentative hydrogen production with N-2 sparging. Biotechnol. Lett. 2006, 28:1485-1491.
Pauss A., Andre G., Perrier M., Guiot S.R. Liquid-to-gas mass-transfer in anaerobic processes - inevitable transfer limitations of methane and hydrogen in the biomethanation process. Appl. Environ. Microbiol. 1990, 56:1636-1644.
Frigon J.C., Guiot S.R. Impact of liquid-to-gas hydrogen mass transfer on substrate conversion efficiency of an upflow anaerobic sludge bed and filter reactor. Enzyme Microb. Technol. 1995, 17:1080-1086.
Kraemer J.T., Bagley D.M. Optimisation and design of nitrogen-sparged fermentative hydrogen production bioreactors. Int. J. Hydrogen Energy 2008, 33:6558-6565.
Obazu F.O., Ngoma L., Gray V.M. Interrelationships between bioreactor volume effluent recycle rate temperature, pH, %H2, hydrogen productivity and hydrogen yield with undefined bacterial cultures. Int. J. Hydrogen Energy 2012, 37:5579-5590.
Treybal R. Mass-Transfer Operations 1980, McGraw-Hill, New York.
Klasson K.T., Ackerson C.M.D., Clausen E.C., Gaddy J.L. Biological conversion of synthesis gas into fuels. Int. J. Hydrogen Energy 1992, 17:281-288.
Vega J.L., Clausen E.C., Gaddy J.L. Design of bioreactors for coal synthesis gas fermentations. Resour. Conserv. Recycl. 1990, 3:149-160.
Masset J., Hiligsmann S., Hamilton C., Beckers L., Franck F., Thonart P. Effect of pH on glucose and starch fermentation in batch and sequenced-batch mode with a recently isolated strain of hydrogen-producing Clostridium butyricum CWBI1009. Int. J. Hydrogen Energy 2010, 35:3371-3378.
Hiligsmann S., Masset J., Hamilton C., Beckers L., Thonart P. Comparative study of biological hydrogen production by pure strains and consortia of facultative and strict anaerobic bacteria. Bioresource Technol. 2011, 102:3810-3818.
Masset J., Calusinska M., Hamilton C., Hiligsmann S., Joris B., Wilmotte A., Thonart P. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnol. Biofuels. 2012, 5(35):1-15.
Hamilton C., Hiligsmann S., Beckers L., Masset J., Wilmotte A., Thonart P. Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode. Int. J. Hydrogen Energy 2010, 35:1089-1098.
Wang J.L., Wan W. Kinetic models for fermentative hydrogen production: a review. Int. J. Hydrogen Energy 2009, 34:3313-3323.
Kolb B., Ettre L.S. Static Headspace-Gas Chromatography: Theory and Practice 2006, Wiley.
Sherwood T.K., Pigford R.L., Wilke C.R. Mass Transfer 1975, McGraw-Hill.
Kraemer J.T., Bagley D.M. Simulation of the impact of higher ammonia recycle loads caused by upgrading anaerobic sludge digesters. Water Qual. Res. J. Can. 2005, 40:491-499.
Van't Riet K. Review of measuring methods and results in nonviscous gas-liquid mass transfer in stirred vessels. Ind. Eng. Chem. Process Des. Dev. 1979, 18:357-364.
Shizas I., Bagley D.M. Fermentative hydrogen production in a system using anaerobic digester sludge without heat treatment as a biomass source. 10th IWA Congress on Anaerobic Digestion 2004, 139-144. IWA Publishing.
Hiligsmann S., Beckers L., Masset J., Hamilton C., Thonart P. Improvement of fermentative biohydrogen production by Clostridium butyricum CWBI1009 in sequenced-batch, horizontal fixed bed and biodisc-like anaerobic reactors with biomass retention. Int. J. Hydrogen Energy 2014, 39:6899-6911.
Collet C., Gaudard O., Péringer P., Schwitzguébel J.-P. Acetate production from lactose by Clostridium thermolacticum and hydrogen-scavenging microorganisms in continuous culture - effect of hydrogen partial pressure. J. Biotechnol. 2005, 118:328-338.
Aceves-Lara C.A., Latrille E., Buffiere P., Bernet N., Steyer J.P. Experimental determination by principal component analysis of a reaction pathway of biohydrogen production by anaerobic fermentation. Chem. Eng. Process. 2008, 47:1968-1975.
Lo Y.C., Lee K.S., Lin P.J., Chang J.S. Bioreactors configured with distributors and carriers enhance the performance of continuous dark hydrogen fermentation. Bioresource Technol. 2009, 100:4381-4387.
Valdez-Vazquez I., Rios-Leal E., Carmona-Martinez A., Munoz-Paez K.M., Poggi-Varaldo H.M. Improvement of biohydrogen production from solid wastes by intermittent venting and gas flushing of batch reactors headspace. Environ. Sci. Technol. 2006, 40:3409-3415.
Zhang K., Ren N.-Q., Cao G.-L., Wang A.-J. Biohydrogen production behavior of moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16 under different gas-phase conditions. Int. J. Hydrogen Energy 2011, 36:14041-14048.
Hussy I., Hawkes F.R., Dinsdale R., Hawkes D.L. Continuous fermentative hydrogen production from sucrose and sugarbeet. Int. J. Hydrogen Energy 2005, 30:471-483.
Massanet-Nicolau, Guwy A., Dinsdale R., Premier G., Esteves S. Production of hydrogen from sewage biosolids in a continuously fed bioreactor: effect of hydraulic retention time and sparging. Int. J. Hydrogen Energy 2010, 35:469-478.
Beckers L., Hiligsmann S., Masset J., Hamilton C., Thonart P. Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Procedia 2012.
Puhulwella R.G., Beckers L., Delvigne F., Grigorescu A.S., Thonart P., Hiligsmann S. Mesophilic biohydrogen production by Clostridium butyricum CWBI 1009 in trickling biofilter reactor. Int. J. Hydrogen Energy 2014, 39:16902-16913.
Lee H.S., Salerno M.B., Rittmann B.E. Thermodynamic evaluation on H-2 production in glucose fermentation. Environ. Sci. Technol. 2008, 42:2401-2407.
Jung K.-W., Kim D.-H., Kim S.-H., Shin H.-S. Bioreactor design for continuous dark fermentative hydrogen production. Bioresource Technol. 2011, 102:8612-8620.