Dilatometry; Electron Microscopy; Internal Damage; Mechanical Characterization; Strengthening Mechanism; Tool Steel; LiMaRC - Liège Materials Research Center; CAREµ
Abstract :
[en] The mechanical behavior of the fully austenitic matrix of high-chromium cast steel (HCCS) alloy is
determined by external compression stress applied at 300 and 700 C. The microstructure is roughly
characterized toward both optical and scanning electron microscopy analyses. Dilatometry is used during
heating from room temperature up to austenitization to study the solid-state phase transformations, precipitation,
and dissolution reactions. Two various strengthening phenomena (precipitation hardening and
stress-induced bainite transformation) and one softening mechanism (dynamic recovery) are highlighted
from compression tests. The influence of the temperature and the carbide type on the mechanical behavior
of the HCCS material is also enhanced. Cracks observed on grain boundary primary carbides allow
establishing a rough damage model. The crack initiation within the HCCS alloy is strongly dependent on
the temperature, the externally applied stress, and the matrix strength and composition.
Disciplines :
Materials science & engineering
Author, co-author :
Tchuindjang, Jérôme Tchoufack ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Neira Torres, Ingrid; Universidad de Concepción, Chile > Department of Materials Engineering
Fores, Paulo; Universidad de Concepción, Chile > Department of Mechanical Engineering
Habraken, Anne ; Université de Liège - ULiège > Département ArGEnCo > Département ArGEnCo
Lecomte-Beckers, Jacqueline ; Université de Liège - ULiège > Département d'aérospatiale et mécanique > Science des matériaux métalliques
Language :
English
Title :
Phase Transformations and Crack Initiation in a High-Chromium Cast Steel Under Hot Compression Tests
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
A.M. Bayer, B. Becherer, and T. Vasco, High-Speed Tool Steels. ASM Handbook Vol. 16 Machining, ASM International, Materials Park, 1989, p 51–59
Z. Zhang, D. Delagnes, and G. Bernhart, Microstructure Evolution of Hot-Work Tool Steels During Tempering and Definition of a Kinetic Law Based on Hardness Measurements, Mater. Sci. Eng. A, 2004, 380(1), p 222–230
J. Lecomte-Beckers, M. Sinnaeve, and J. Tchoufang Tchuindjang, New Trends in Hot Strip Mill Roughing Mills: Characterization of High Chromium Steel and Semi-HSS Grades, Assoc. Iron & Steel Technol., Vol. 2, 2012, p 1–8.
K.C. Hwang, S. Lee, and H.C. Lee, Effects of Alloying Elements on Microstructure and Fracture Properties of Cast High Speed Steel Rolls Part I: Microstructural Analysis, Mater. Sci. Eng. A, 1998, 254(1), p 282–295
M. Boccalini and H. Goldstein, Solidification of High Speed Steels, Inter. Mater. Rev., 2001, 46(2), p 92–115
J.W. Park, H.C. Lee, and S. Lee, Composition, Microstructure, Hardness, and Wear Properties of High-Speed Steel Rolls, Met. Mater. Trans. A, 1999, 30(2), p 399–409
H. Fu, Y. Qu, J. Xing, X. Zhi, Z. Jiang, M. Li, and Y. Zhang, Investigations on Heat Treatment of a High-Speed Steel Roll, Jrn. Mat. Eng. Perf., 2008, 17(4), p 535–542
S.Z. Qamar, Effect of Heat Treatment on Mechanical Properties of H11 Tool Steel, Jrn. Ach. Mater. Manuf. Eng., 2009, 35(2), p 115–120
I. Neira Torres, G. Gilles, J. Tchoufang Tchuindjang, J. Lecomte-Beckers, M. Sinnaeve, and A.M. Habraken, Study of Residual Stresses in Bimetallic Work Rolls, Adv. Mat. Res., 2014, 996, p 580–585
H. Li, Z. Jiang, K.A. Tieu, and W. Sun, Analysis of Premature Failure of Work Rolls in a Cold Strip Plant, Wear, 2007, 263(7), p 1442–1446
K.H. Ziehenberger and M. Windhager, Recent Developments in HSM Rougher Rolls: Risks and Chances, Iron Steel Technol., 2006, 3(9), p 38–41
R. Liang and A.S. Khan, A Critical Review of Experimental Results and Constitutive Models for BCC and FCC Metals Over a Wide Range of Strain Rates and Temperatures, Int. Jrn. Plast., 1999, 15(9), p 963–980
G.Z. Voyiadjis and F.H. Abed, Effect of Dislocation Density Evolution on the Thermomechanical Response of Metals with Different Crystal Structures at Low and High Strain Rates and Temperatures, Arch. Mech., 2005, 57(4), p 299–343
J. Liu, H. Chang, R. Wu, T.Y. Hsu, and X. Ruan, Investigation on Hot Deformation Behavior of AISI, T1 High-speed Steel, Mater. Char., 2000, 45(3), p 175–186
C.A.C. Imbert and H.J. McQueen, Dynamic Recrystallization of A2 and M2 Tool Steels, Mater. Sci. Eng. A, 2001, 313(1), p 104–116
I. Tamura, M. Ibaraki, and H. Nozaki, Some Experiments on Ausforming of Tool Steels, Trans. JIM., 1996, 7(4), p 248–252
D. Jandova, L.W. Meyer, B. Masek, Z. Novy, D. Kesner, and P. Motycka, The Influence of Thermo-mechanical Processing on the Microstructure of Steel 20MoCrS4, Mater. Sci. Eng. A, 2003, 349(1), p 36–47
T. Shigeta, A. Takada, H. Terasaki, and Y.-I. Komizo, The Effects of Ausforming on Variant Selection of Martensite in Cr-Mo Steel, Qart. Jrn. Jpn. Weld. Soc., 2013, 31(4), p 178s–182s
P.C.J. Gallagher, The Influence of Alloying, Temperature, and Related Effects on the Stacking Fault Energy, Met. Trans., 1970, 1(9), p 2429–2461
S.R. Kalidindi, Modeling The Strain Hardening Response of Low SFE FCC Alloys, Int. Jrn. Plast., 1998, 14(12), p 1265–1277
U.F. Kocks and H. Mecking, Physics and Phenomenology of Strain Hardening: The FCC Case, Prog. Mater. Sci., 2003, 48(3), p 171–273
K. Maruyama, K. Sawada, J. Koike, H. Sato, and K. Yagi, Examination of Deformation Mechanism Maps in 2.25Cr-1Mo Steel by Creep Tests at Strain Rates of 10−11 to 10−6 s−1, Mater. Sci. Eng. A, 1997, 224(1), p 166–172
P.J. Ferreira, J.B. VanderSande, M. AmaralFortes, and A. Kyrolainen, Microstructure Development During High-Velocity Deformation, Met. Mater. Trans. A, 2004, 35(10), p 3091–3101
J. Tchoufang Tchuindjang, M. Sinnaeve, and J. Lecomte-Beckers, Influence of High Temperature Heat Treatment on in situ Transformation of Mo-rich Eutectic Carbides in HSS and Semi-HSS Grades, Abrasion 2011, Conference Proceedings, Liege, J. Lecomte-Beckers, J. Tchoufang Tchuindjang, Ed., 2011, p 61-75, ISBN 978-2-8052-0124-0.
J.-Y. Chae, J.-H. Jang, G. Zhang, K.-H. Kim, J.S. Lee, H.K.D.H. Bhadeshia, and D.-W. Suh, Dilatometric Analysis of Cementite Dissolution in Hypereutectoid Steels Containing Cr, Scripta Mater., 2011, 65(3), p 245–248
I. Neira Torres, G. Gilles, J. Tchoufang Tchuindjang, J. Lecomte-Beckers, M. Sinnaeve, and A.M. Habraken, Prediction of Residual Stresses by FE Simulations on Bimetallic Work Rolls During Cooling, Comp. Meth. Mater. Sci., 2013, 13(2), p 84-91.
K. Hase, C. Garcia-Mateo, and H.K.D.H. Bhadeshia, Bainite Formation Influenced by Large Stress, Mater. Sci. Technol., 2004, 20(12), p 1499–1505
H.K.D.H. Bhadeshia, Bainite in Steels: Transformations, Microstructures and Properties, 2nd ed., IOM Communication Ltd, London, 2001.
J.R. Yang, C.Y. Huang, W.H. Hsieh, and C.S. Chiou, Mechanical Stabilization of Austenite Against Bainitic Reaction in Fe-Mn-Si-C Bainitic Steel, Mater. Trans. JIM, 1996, 37(4), p 579–584
D.S. Liu, G.D. Wang, X.H. Liu, and G.Z. Cui, Mechanical Stabilization of Deformed Austenite During Continuous Cooling Transformation in a C-Mn-Cr-Ni-Mo Plastic Die Steel, Acta Met. Sin., 2009, 11(2), p 93–99
X.J. Jin, N. Min, K.Y. Zheng, and T.Y. Hsu, The Effect of Austenite Deformation on Bainite Formation in an Alloyed Eutectoid Steel, Mater. Sci. Eng. A, 2006, 438, p 170–172
W. Gong, Y. Tomota, Y. Adachi, A.M. Paradowska, J.F. Kelleher, and S.Y. Zhang, Effects of Ausforming Temperature on Bainite Transformation, Microstructure and Variant Selection in Nanobainite Steel, Acta Mater., 2013, 61(11), p 4142–4154
H.K.D.H. Bhadeshia, S.A. David, J.M. Vitek, and R.W. Reed, Stress Induced Transformation to Bainite in Fe-Cr-Mo-C Pressure Vessel Steel, Mater. Sci. Technol., 1991, 7(8), p 686–698
H.K.D.H. Bhadeshia, Effect of Stress & Strain on Formation of Bainite Steels, Hot Workability of Steels and Light Alloys-Composites, (Montreal, Canada), H.J. McQueen, E.V. Konpleva, N.D. Ryan, Ed., Can. Int. Min., 1996, p 543-556.
S. Kundu, K. Hase, and H.K.D.H. Bhadeshia, Crystallographic Texture of Stress-affected Bainite, Proc. R. Soc. A, 2007, 463(2085), p 2309–2328
A.A. Shirzadi, H. Abreu, L. Pocock, D. Klobcar, P.J. Withers, and H.K.D.H. Bhadeshia, Bainite Orientation in Plastically Deformed Austenite, Int. Jrn. Mater. Res., 2009, 100(1), p 40–45
M. Durand-Charre, Microstructure of Steels and Cast Irons, Chap. 11, Springer, New York, 2004, p 219–222, ISBN 3-540-20963-8
D.V. Shtansky, K. Nakai, and Y. Ohmori, Decomposition of Martensite by Discontinuous-like Precipitation Reaction in an Fe-17Cr-0.5C Alloy, Acta Mater., 2000, 48(4), p 969–983
G. Miyamoto, H. Usuki, Z.-D. Li, and T. Furuhara, Effects of Mn, Si and Cr Addition on Reverse Transformation at 1073 K from Spheroidized Cementite Structure in Fe-0.6 Mass% C Alloy, Acta Mater., 2010, 58(13), p 4492–4502
K.D. Clarke, C.J. Van Tyne, C.J. Vigil, and R.E. Hackenberg, Induction Hardening 5150 Steel: Effects of Initial Microstructure and Heating Rate, Jrn. Mater. Eng. Perf., 2011, 20(2), p 161–168
S.-J. Lee and K.D. Clarke, A Conversional Model for Austenite Formation in Hypereutectoid Steels, Met. Mater. Trans. A, 2010, 41(12), p 3027–3031
M. Dünckelmeyer, C. Krempaszky, E. Werner, G. Hein, and K. Schörkhuber, On the Causes of Banding Failure, Proc. of METEC InSteelCon 2011, STEELSIM, 2011, p 1–9
P.W. Shelton and A.S. Wronski, Cracking in M2 High Speed Steel, Mater. Sci. Technol., 1983, 17(11), p 533–540
M. Kroon and J. Faleskog, Micromechanics of Cleavage Fracture Initiation in Ferritic Steels by Carbide Cracking, Jrn. Mech. Phys. Sol., 2005, 53(1), p 171–196
C.R.S. da Silva and M. Boccalini, Thermal Cracking of Multicomponent White Cast Iron, Mater. Sci. Technol., 2005, 21(5), p 565–573
B.Z. Margolin, V.A. Shvetsova, and A. Ya, Varovin, Preliminary Compression of a Material as a Factor in Changing the Brittle Fracture Mechanism for BCC Metals, Str. Mater., 1996, 28(4), p 251–261
V. Vodopivec, Dynamic Recovery of Austenite in Low Carbon Steels and its Relationship to the Precipitation of AlN, Jrn. Mater. Sci., 1975, 10(6), p 1082–1084
E. Nes, Recovery Revisited, Acta Mater., 1995, 43(6), p 2189–2207
L. Kubin, T. Hoc, and B. Devincre, Dynamic Recovery and its Orientation Dependence in Face-centered Cubic Crystals, Acta Mater., 2009, 57(8), p 2567–2575
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.