Chemical activation; Doping (additives); Electrolytes; Hematite; Mesoporous materials; Scaffolds; Back illumination; Beneficial effects; Crystallite growth; Dopant activation; High temperature; Mesoporous films; Photoelectrolysis; Photogenerated holes; Semiconductor doping
Abstract :
[en] (Graph Presented). In this study, we report the synthesis of Ti-doped mesoporous hematite films by soft-templating for application as photoanodes in the photoelectrolysis of water (water splitting). Because the activation of the dopant requires a heat treatment at high temperature (≥800°C), it usually results in the collapse of the mesostructure. We have overcome this obstacle by using a temporary SiO2 scaffold to hinder crystallite growth and thereby maintain the mesoporosity. The beneficial effect of the activated dopant has been confirmed by comparing the photocurrent of doped and undoped films treated at different temperatures. The role of the mesostructure was investigated by comparing dense, collapsed, and mesoporous films heated at different temperatures and characterized under front and back illumination. It turns out that the preservation of the mesotructure enables a better penetration of the electrolyte into the film and therefore reduces the distance that the photogenerated holes have to travel to reach the electrolyte. As a result, we found that mesoporous films with dopant activation at 850°C perform better than comparable dense and collapsed films.
Disciplines :
Chemistry
Author, co-author :
Toussaint, Caroline ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Tran, Hoang Son ; Université de Liège - ULiège > Département ArGEnCo > Département Argenco : Secteur MS2F
Colson, Pierre ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Dewalque, Jennifer ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Vertruyen, Bénédicte ; Université de Liège - ULiège > Département de chimie (sciences) > Chimie inorganique structurale
Gilbert, Bernard ; Université de Liège - ULiège > Département de chimie (sciences) > Département de chimie (sciences)
Nguyen, Ngoc Duy ; Université de Liège - ULiège > Département de physique > Physique des solides, interfaces et nanostructures
Cloots, Rudi ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Henrist, Catherine ; Université de Liège - ULiège > Département de chimie (sciences) > LCIS - GreenMAT
Language :
English
Title :
Combining mesoporosity and Ti-doping in hematite films for water splitting
Publication date :
2015
Journal title :
Journal of Physical Chemistry. C, Nanomaterials and interfaces
ISSN :
1932-7447
eISSN :
1932-7455
Publisher :
American Chemical Society, Washington, United States - District of Columbia
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446-6473.
Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37-38.
Cho, S.; Jang, J.-W.; Lee, K.-H.; Lee, J. S. Research Update: Strategies for Efficient Photoelectrochemical Water Splitting Using Metal Oxide Photoanodes. APL Mater. 2014, 2, 010703.
Sivula, K.; Le Formal, F.; Graetzel, M. Solar Water Splitting: Progress Using Hematite (α-Fe2O3) Photoelectrodes. ChemSusChem 2011, 4, 432-449.
Tilley, S. D.; Cornuz, M.; Sivula, K.; Graetzel, M. Light-Induced Water Splitting with Hematite: Improved Nanostructure and Iridium Oxide Catalysis. Angew. Chem., Int. Ed. 2010, 49, 6405-6408.
Brillet, J.; Cornuz, M.; Le Formal, F.; Yum, J.-H.; Gratzel, M.; Sivula, K. Examining Architectures of Photoanode-Photovoltaic Tandem Cells for Solar Water Splitting. J. Mater. Res. 2010, 25, 17-24.
Prévot, M. S.; Sivula, K. Photoelectrochemical Tandem Cells for Solar Water Splitting. J. Phys. Chem. C 2013, 117, 17879-17893.
Han, L.; Abdi, F. F.; Perez Rodriguez, P.; Dam, B.; van de Krol, R.; Zeman, M.; Smets, A. H. M. Optimization of Amorphous Silicon Double Junction Solar Cells for an Efficient Photoelectrochemical Water Splitting Device Based on a Bismuth Vanadate Photoanode. Phys. Chem. Chem. Phys. 2014, 16, 4220-4229.
Brillet, J.; Yum, J.-H.; Cornuz, M.; Hisatomi, T.; Solarska, R.; Augustynski, J.; Graetzel, M.; Sivula, K. Highly Efficient Water Splitting by a Dual-Absorber Tandem Cell. Nat. Photonics 2012, 6, 824-828.
Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Gratzel, M. Influence of Feature Size, Film Thickness and Silicon Doping on the Performance of Nanostructured Hematite Photoanodes for Solar Water Splitting. J. Phys. Chem. C 2009, 113, 772-782.
Zhang, M.; Luo, W.; Li, Z.; Yu, T.; Zou, Z. Improved Photoelectrochemical Responses of Si and Ti Codoped α-Fe2O3 Photoanode Films. Appl. Phys. Lett. 2010, 97, 042105/1-042105/3.
Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N. Enhancement of Photoelectrochemical Hydrogen Production from Hematite Thin Films by the Introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477-16488.
Ling, Y.; Wang, G.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-Doped Hematite Nanostructures for Photoelectrochemical Water Splitting. Nano Lett. 2011, 11, 2119-2125.
Saremi-Yarahmadi, S.; Wijayantha, K. G. U.; Tahir, A. A.; Vaidhyanathan, B. Nanostructured α-Fe2O3 Electrodes for Solar Driven Water Splitting: Effect of Doping Agents on Preparation and Performance. J. Phys. Chem. C 2009, 113, 4768-4778.
Liao, P.; Toroker, M. C.; Carter, E. A. Electron Transport in Pure and Doped Hematite. Nano Lett. 2011, 11, 1775-1781.
Hamd, W.; et al. Mesoporous α-Fe2O3 Thin Films Synthesized via the Sol-Gel Process for Light-Driven Water Oxidation. Phys. Chem. Chem. Phys. 2012, 14, 13224-13232.
Zhong, D. K.; Cornuz, M.; Sivula, K.; Gratzel, M.; Gamelin, D. R. Photo-Assisted Electrodeposition of Cobalt-Phosphate (Co-Pi) Catalyst on Hematite Photoanodes for Solar Water Oxidation. Energy Environ. Sci. 2011, 4, 1759-1764.
Kay, A.; Cesar, I.; Graetzel, M. New Benchmark for Water Photooxidation by Nanostructured α-Fe2O3 Films. J. Am. Chem. Soc. 2006, 128, 15714-15721.
Brillet, J.; Gratzel, M.; Sivula, K. Decoupling Feature Size and Functionality in Solution-Processed, Porous Hematite Electrodes for Solar Water Splitting. Nano Lett. 2010, 10, 4155-4160.
Goncalves, R. H.; Lima, B. H. R.; Leite, E. R. Magnetite Colloidal Nanocrystals: A Facile Pathway To Prepare Mesoporous Hematite Thin Films for Photoelectrochemical Water Splitting. J. Am. Chem. Soc. 2011, 133, 6012-6019.
Sivula, K.; Zboril, R.; Le, F. F.; Robert, R.; Weidenkaff, A.; Tucek, J.; Frydrych, J.; Gratzel, M. Photoelectrochemical Water Splitting with Mesoporous Hematite Prepared by a Solution-Based Colloidal Approach. J. Am. Chem. Soc. 2010, 132, 7436-7444.
Zong, X.; Thaweesak, S.; Xu, H.; Xing, Z.; Zou, J.; Lu, G.; Wang, L. A Scalable Colloidal Approach To Prepare Hematite Films for Efficient Solar Water Splitting. Phys. Chem. Chem. Phys. 2013, 15, 12314-12321.
Mohapatra, S. K.; John, S. E.; Banerjee, S.; Misra, M. Water Photooxidation by Smooth and Ultrathin α-Fe2O3 Nanotube Arrays. Chem. Mater. 2009, 21, 3048-3055.
Kleiman-Shwarsctein, A.; Hu, Y.-S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 Doped with Mo or Cr as Photoanodes for Photocatalytic Water Splitting. J. Phys. Chem. C 2008, 112, 15900-15907.
Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited Zirconium-Doped α-Fe2O3 Thin Film for Photoelectrochemical Water Splitting. Int. J. Hydrogen Energy 2011, 36, 2777-2784.
Gardner, J. M.; Kim, S.; Searson, P. C.; Meyer, G. J. Electrodeposition of Nanometer-Sized Ferric Oxide Materials in Colloidal Templates for Conversion of Light to Chemical Energy. J. Nanomater. 2011, 737812.
Kumari, S.; Singh, A. P.; Sonal; Deva, D.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Spray Pyrolytically Deposited Nanoporous Ti4+ Doped Hematite Thin Films for Efficient Photoelectrochemical Splitting of Water. Int. J. Hydrogen Energy 2010, 35, 3985-3990.
Duret, A.; Grätzel, M. Visible Light-Induced Water Oxidation on Mesoscopic α-Fe2O3 Films Made by Ultrasonic Spray Pyrolysis. J. Phys. Chem. B 2005, 109, 17184-17191.
Boudjemaa, A.; Bachari, K.; Trari, M. Photo-Electrochemical Characterization of Porous Material Fe-FSM-16. Application for Hydrogen Production. Mater. Sci. Semicond. Process. 2013, 16, 838-844.
Bora, D. K.; Braun, A.; Erni, R.; Fortunato, G.; Graule, T.; Constable, E. C. Hydrothermal Treatment of a Hematite Film Leads to Highly Oriented Faceted Nanostructures with Enhanced Photocurrents. Chem. Mater. 2011, 23, 2051-2061.
Rahman, M.; Wadnerkar, N.; English, N. J.; MacElroy, J. M. D. The Influence of Ti- and Si-Doping on the Structure, Morphology and Photo-Response Properties of α-Fe2O3 for Efficient Water-Splitting: Insights from Experiment and First-Principles Calculations. Chem. Phys. Lett. 2014, 592, 242-246.
Guo, L.; Ida, S.; Takashiba, A.; Daio, T.; Teramae, N.; Ishihara, T. Soft-Templating Method To Synthesize Crystalline Mesoporous α-Fe2o3 Films. New J. Chem. 2014, 38, 1392-1395.
Liu, J.; Shahid, M.; Ko, Y.-S.; Kim, E.; Ahn, T. K.; Park, J. H.; Kwon, Y.-U. Investigation of Porosity and Heterojunction Effects of a Mesoporous Hematite Electrode on Photoelectrochemical Water Splitting. Phys. Chem. Chem. Phys. 2013, 15, 9775-9782.
Ogawa, M.; Shimura, N.; Ayral, A. Deposition of Thin Nanoporous Silica Layers on Solid Surfaces. Chem. Mater. 2006, 18, 1715-1718.
Brezesinski, T.; Groenewolt, M.; Antonietti, M.; Smarsly, B. Crystal-to-Crystal Phase Transition in Self-Assembled Mesoporous Iron Oxide Films. Angew. Chem., Int. Ed. 2006, 45, 781-784.
Brezesinski, T.; Groenewolt, M.; Antonietti, M.; Smarsly, B. Crystal-to-Crystal Phase Transition in Self-Assembled Mesoporous Iron Oxide Films. Angew. Chem., Int. Ed. 2006, 45, 781-784.
Le Formal, F.; Tetreault, N.; Cornuz, M.; Moehl, T.; Graetzel, M.; Sivula, K. Passivating Surface States on Water Splitting Hematite Photoanodes with Alumina Overlayers. Chem. Sci. 2011, 2, 737-743.
Le Formal, F.; Sivula, K.; Grätzel, M. The Transient Photocurrent and Photovoltage Behavior of a Hematite Photoanode under Working Conditions and the Influence of Surface Treatments. J. Phys. Chem. C 2012, 116, 26707-26720.
Pendlebury, S. R.; Wang, X.; Le Formal, F.; Cornuz, M.; Kafizas, A.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. Ultrafast Charge Carrier Recombination and Trapping in Hematite Photoanodes under Applied Bias. J. Am. Chem. Soc. 2014, 136, 9854-9857.
Le Formal, F.; Pendlebury, S. R.; Cornuz, M.; Tilley, S. D.; Grätzel, M.; Durrant, J. R. Back Electron-Hole Recombination in Hematite Photoanodes for Water Splitting. J. Am. Chem. Soc. 2014, 136, 2564-2574.
Lee, W. J.; Shinde, P. S.; Go, G. H.; Doh, C. H. Cathodic Shift and Improved Photocurrent Performance of Cost-Effective Fe2O3 Photoanodes. Int. J. Hydrogen Energy 2014, 39, 5575-5579.
Barroso, M.; Cowan, A. J.; Pendlebury, S. R.; Grätzel, M.; Klug, D. R.; Durrant, J. R. The Role of Cobalt Phosphate in Enhancing the Photocatalytic Activity of α-Fe2O3 toward Water Oxidation. J. Am. Chem. Soc. 2011, 133, 14868-14871.
Sivula, K. Metal Oxide Photoelectrodes for Solar Fuel Production, Surface Traps, and Catalysis. J. Phys. Chem. Lett. 2013, 4, 1624-1633.
Frydrych, J.; et al. Facile Fabrication of Tin-Doped Hematite Photoelectrodes - Effect of Doping on Magnetic Properties and Performance for Light-Induced Water Splitting. J. Mater. Chem. 2012, 22, 23232-23239.
Wang, G.; Ling, Y.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile Synthesis of Highly Photoactive α-Fe2O3-Based Films for Water Oxidation. Nano Lett. 2011, 11, 3503-3509.
Bertoluzzi, L.; Badia-Bou, L.; Fabregat-Santiago, F.; Gimenez, S.; Bisquert, J. Interpretation of Cyclic Voltammetry Measurements of Thin Semiconductor Films for Solar Fuel Applications. J. Phys. Chem. Lett. 2013, 4, 1334-1339.
Zandi, O.; Hamann, T. W. Enhanced Water Splitting Efficiency through Selective Surface State Removal. J. Phys. Chem. Lett. 2014, 5, 1522-1526.
Warren, S. C.; Voïtchovsky, K.; Dotan, H.; Leroy, C. M.; Cornuz, M.; Stellacci, F.; Hébert, C.; Rothschild, A.; Grätzel, M. Identifying Champion Nanostructures for Solar Water-Splitting. Nat. Mater. 2013, 12, 842-849.
Beermann, N.; Vayssieres, L.; Lindquist, S. E.; Hagfeldt, A. Photoelectrochemical Studies of Oriented Nanorod Thin Films of Hematite. J. Electrochem. Soc. 2000, 147, 2456-2461.
Miller, E. L.; Paluselli, D.; Marsen, B.; Rocheleau, R. E. Low-Temperature Reactively Sputtered Iron Oxide for Thin Film Devices. Thin Solid Films 2004, 466, 307-313.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.