[en] Chemical composition of banana rachis from three varieties (Grande naine, Pelipita, and CRBP969) was ana- lyzed, and the genotype contribution to composition variabil- ity was investigated. Wet chemistry and instrumental analysis procedures (X-ray diffraction, 31P NMR spectroscopy, and thermogravimetry) were used. Some significant differences were found among the three genotypes: GN-AAA genotype was found to be significantly the highest in ash fraction (30.16 %) and the lowest in acid insoluble lignin (6.58 %) at 95 % confidence level. It showed also the highest content in potassium (43.5 % in ash). Implication of compositional dif- ferences on valorization efficiency by biochemical or thermo- chemical pathways was investigated. For this purpose, corre- lation coefficients between compositional characteristics and yields in volatile compounds from pyrolysis and glucose yields from enzymatic saccharification were analyzed. Ash content was revealed to be the main drawback parameter for volatile yields from pyrolysis (r = −0.93), while for glucose yields during saccharification were limited mainly by the con- tent in guaiacyl units of the lignin fraction (r = −0.98). How- ever, a strong and positive correlation was established be- tween the volatiles yield and the acid insoluble lignin content (r = 0.98) Thus, according to these observations and based on their compositional significant differences, GN-AAA was the better candidate for bioconversion pathway while PPT-ABB and CRBP969-AAAB samples were shown to be better can- didates for thermochemical conversion pathway. This work gives important preliminary information for considering ba- nana rachis as an interesting feedstock candidate for biorefinery.
Vanderghem, Caroline ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Aguedo, Mario ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Gillet, Sébastien ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Jacquet, Nicolas ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Danthine, Sabine ; Université de Liège - ULiège > Chimie et bio-industries > Science des alim. et formul.
Deleu, Magali ; Université de Liège - ULiège > Chimie et bio-industries > Biophysique moléc. numér.
Richel, Aurore ; Université de Liège - ULiège > Chimie et bio-industries > Chimie biologique industrielle
Language :
English
Title :
Genotype contribution to the chemical composition of banana rachis and implications for thermo/biochemical conversion
Publication date :
2015
Journal title :
Biomass Conversion and Biorefinery
ISSN :
2190-6815
eISSN :
2190-6823
Publisher :
Springer, Berlin, Germany
Volume :
5
Issue :
4
Pages :
409-416
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Financial support and scholarship for these studies (Project: Valorization of banana residues and contribution to local sus- tainable development) were provided by the Commission Universitaire pour le Développement (CUD) from Belgium. The authors are also grate- ful to the laboratory of post harvest technology, CARBAP-Cameroon and also to the research staff from the Industrial Chemistry and Biology lab- oratory and Analytical Chemistry Laboratory (GxABTech, ULg, Belgium). Magali DELEU thanks the BFond National de la Recherche
Scientifique^ from Belgium for her position as Research Associate.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Donnison IS, Hodgson EM, Nowakowski DJ, Shield I, Riche A, Bridgwater AV, Clifton-Brown JC (2011) Variation in Miscanthus chemical composition and implications for conversion by pyrolysis and thermo-chemical bio-refining for fuels and chemicals. Bioresour Technol 102(3):3411–3418. doi:10.1016/j.biortech.2010.10.017
Fantozzi F, Slopiecka K, Bartocci P (2011) Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Paper presented at the Third International Conference on Applied Energy, Perugia, Italy, 16–18 May
Alexopoulou E, Sharma N, Papatheohari Y, Christou M, Piscioneri I, Panoutsou C, Pignatelli V (2008) Biomass yields for upland and lowland switchgrass varieties grown in the Mediterranean region. Biomass Bioenergy 32(10):926–933. doi:10.1016/j.biombioe.2008.01.015
García A, González Alriols M, Labidi J (2014) Evaluation of different lignocellulosic raw materials as potential alternative feedstocks in biorefinery processes. Ind Crop Prod 53:102–110. doi:10.1016/j.indcrop.2013.12.019
Lassois L, Busogoro JP, Jijakli H (2009) La banane: de son origine à sa commercialisation. Biotechnol Agron Soc Environ 13(4):575–586
Mohapatra D, Sabyasachi M, Namrata S (2010) Banana and its by-product utilization: an overview. J Sci Ind Res 69:323–329
FAOSTAT (2012) Bananas production in Cameroon. FAO. Accessed 12 August 2012
Belgacem MN, Cordeiro N, Torres IC, Moura JCVP (2004) Chemical composition and pulping of banana pseudo-stems. Ind Crop Prod 19(2):147–154. doi:10.1016/j.indcrop.2003.09.001
Happi ET, Andrianaivo RH, Wathelet B, Tchango JT, Paquot M (2007) Effects of the stage of maturation and varieties on the chemical composition of banana and plantain peels. Food Chem 103(2):590–600. doi:10.1016/j.foodchem.2006.09.006
Li K, Shiyu F, Zhan H, Zhan Y, Lucia LA (2010) Analysis of the chemical composition and morphological structure of banana pseudo-stem. Bioresources 5(2):576–585
Cordeiro N, Oliveira L, Evtuguin DV, Torres IC, Silvestre AJD (2007) Chemical composition of different morphological parts from ‘Dwarf Cavendish’ banana plant and their potential as a non-wood renewable source of natural products. Ind Crop Prod 26(2):163–172. doi:10.1016/j.indcrop.2007.03.002
Cordeiro N, Oliveira L, Evtuguin D, Silvestre AJD (2009) Structural characterization of stalk lignin from banana plant. Ind Crop Prod 29(1):86–95. doi:10.1016/j.indcrop.2008.04.012
Ehrman T (1994) Standard method for ash in biomass. Laboratory analytical procedure. National renewable energy laboratory
Goering HK, Van Soest PJ (1970) Forage Fiber Analyses (Apparatus, Reagents, Procedures, and some Applications). Agriculture Handbook N° 379
Ehrman T (1994) Standard method for the determination of extractives in biomass. Laboratory analytical procedure. National renewable energy laboratory_Ethanol project
Sluiter JB, Sluiter AD (2011) Summative mass closure. Laboratory analytical procedure_Review and integration. National renewable energy laboratory
Saeman JF, Bubl JL, Harris EE (1945) Quantitative saccharification of wood and cellulose. Ind Eng Chem 17:35–37
Sluiter JB, Ruiz RO, Scarlata CJ, Sluiter AD, Templeton DW (2010) Compositional analysis of lignocellulosic feedstocks. 1. Review and description of methods. J Agric Food Chem. doi:10.1021/jf1008023
Vanderghem C, Richel A, Jacquet N, Blecker C, Paquot M (2011) Impact of formic/acetic acid and ammonia pre-treatments on chemical structure and physico-chemical properties of Miscanthus x giganteus lignins. Polym Degrad Stab 96(10):1761–1770. doi:10.1016/j.polymdegradstab.2011.07.022
Ragauskas AJ, Pu Y, Cao S (2011) Application of quantitative 31P NMR in biomass lignin and biofuel precursors characterization. Energy Environ Sci 4(9):3154. doi:10.1039/c1ee01201k
Cardwell RD, Luner P (1976) Thermogravimetric analysis of pulps (part 2): kinetics for dynamic thermogravimetric analysis. Wood Sci Technol 10:16
Kurt SC, Terinte N, Roger I (2011) Overview on native cellulose and microcrystalline cellulose I structure studied by X-ray diffraction (WAXD): comparison between measurement techniques. Lenzinger Ber 89:118–131
Femenia A, Lefebvre AC, Thebaudin JY, Robertson JA, Bourgeois CM (1997) Physical and sensory properties of model foods supplemented with Cauliflower Fiber. J Food Sci 62(4):635–639
Jacquet N, Vanderghem C, Danthine S, Quievy N, Blecker C, Devaux J, Paquot M (2012) Influence of steam explosion on physicochemical properties and hydrolysis rate of pure cellulose fibers. Bioresour Technol 121:221–227. doi:10.1016/j.biortech.2012.06.073
Sun R, Tomkinson J (2002) Comparative study of lignins isolated by alkali and ultrasound-assisted alkali extractions from wheat straw. Ultrason Sonochem 9:85–93
de Vrije T, de Haas GG, Tan GB, Keijsers ERP, Claassen PAM (2002) Pretreatment of miscanthus for hydrogen production by Thermotogaa elfi. Int J Hydrog Energy 27:1381–1390
Medic D, Darr M, Shah A, Rahn S (2012) The effects of particle size, different corn Stover components, and gas residence time on torrefaction of corn stover. Energies 5(12):1199–1214. doi:10.3390/en5041199
Elhassan MAA, Asim FAS, Elsir A, Eldin MS Response of Dwarf Cavendish Banana to Potassium Sulfate in Sennar Area. In: Proceedings the 39th and 40th meetings of the national crop husbandry committe, Wad Medani (Sudan), 2006. (ARC), Wad Medani (Sudan), pp 157–165
Sathiamoorthy S, Jeyabaskaran KJ (2001) Potassium management of banana. Paper presented at the IPI PRII K in nutrient management for sustainable crop production in India, New Delhi, India
Shackford L (2003) A comparison of pulping and bleaching of kraft sofwood and Eucalyptus pulps. Paper presented at the 36th International Pulp and Paper Congress and Exhibition, Sao Paulo, Brazil
Sun Y, Cheng J (2002) Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour Technol 83:1–11
Monti A, Di Virgilio N, Venturi G (2008) Mineral composition and ash content of six major energy crops. Biomass Bioenergy 32(3):216–223. doi:10.1016/j.biombioe.2007.09.012
Suzuki T, Nakajima H, N-o I, Oda H, Miyake T (2011) Effect of mineral matters in biomass on the gasification rate of their chars. Biomass Convers Biorefinery 1(1):17–28. doi:10.1007/s13399-011-0006-2
Liu L, Ye XP, Womac AR, Sokhansanj S (2010) Variability of biomass chemical composition and rapid analysis using FT-NIR techniques. Carbohydr Polym 81(4):820–829. doi:10.1016/j.carbpol.2010.03.058
Oh H, Annamalai K, Sweeten JM (2011) Effects of ash fouling on heat transfer during combustion of cattle biomass in a small-scale boiler burner facility under unsteady transition conditions. Int J Energy Res 35:1236–1249. doi:10.1002/er.1768
Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86(12–13):1781–1788. doi:10.1016/j.fuel.2006.12.013
Garcia-Aparicio M, Parawira W, Van Rensburg E, Diedericks D, Galbe M, Rosslander C, Zacchi G, Gorgens J (2011) Evaluation of steam-treated giant bamboo for production of fermentable sugars. Biotechnol Prog 27(3):641–649. doi:10.1002/btpr.580
Heiss-Blanquet S, Zheng D, Lopes Ferreira N, Lapierre C, Baumberger S (2011) Effect of pretreatment and enzymatic hydrolysis of wheat straw on cell wall composition, hydrophobicity and cellulase adsorption. Bioresour Technol 102(10):5938–5946. doi:10.1016/j.biortech.2011.03.011
Santos RB, Hart PW, Jameel H, H-m C (2013) Wood based lignin reactions important to the biorefinery and pulp paper industries. Bioresources 8(1):1456–1477
del Rio JC, Rencoret J, Gutierrez A, Nieto L, Jimenez-Barbero J, Martinez AT (2011) Structural characterization of guaiacyl-rich lignins in flax (Linum usitatissimum) fibers and shives. J Agric Food Chem 59(20):11088–11099. doi:10.1021/jf201222r
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.