Article (Scientific journals)
An analogue of Cobham's theorem for graph directed iterated function systems
Charlier, Emilie; Leroy, Julien; Rigo, Michel
2015In Advances in Mathematics, 280, p. 86-120
Peer Reviewed verified by ORBi
 

Files


Full Text
final gdifs.pdf
Author preprint (423.43 kB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Cobham's theorem; Iterated function system; real number; Büchi automata; Pisot number; Parry number
Abstract :
[en] Feng and Wang showed that two homogeneous iterated function systems in $\mathbb{R}$ with multiplicatively independent contraction ratios necessarily have different attractors. In this paper, we extend this result to graph directed iterated function systems in $\mathbb{R}^n$ with contraction ratios that are of the form $\frac{1}{\beta}$, for integers $\beta$. By using a result of Boigelot {\em et al.}, this allows us to give a proof of a conjecture of Adamczewski and Bell. In doing so, we link the graph directed iterated function systems to Büchi automata. In particular, this link extends to real numbers $\beta$. We introduce a logical formalism that permits to characterize sets of $\mathbb{R}^n$ whose representations in base $\beta$ are recognized by some Büchi automata. This result depends on the algebraic properties of the base: $\beta$ being a Pisot or a Parry number. The main motivation of this work is to draw a general picture representing the different frameworks where an analogue of Cobham's theorem is known.
Disciplines :
Mathematics
Author, co-author :
Charlier, Emilie  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Leroy, Julien ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Rigo, Michel  ;  Université de Liège - ULiège > Département de mathématique > Mathématiques discrètes
Language :
English
Title :
An analogue of Cobham's theorem for graph directed iterated function systems
Publication date :
2015
Journal title :
Advances in Mathematics
ISSN :
0001-8708
eISSN :
1090-2082
Publisher :
Academic Press, San Diego, United States - California
Volume :
280
Pages :
86-120
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 11 December 2014

Statistics


Number of views
113 (33 by ULiège)
Number of downloads
88 (8 by ULiège)

Scopus citations®
 
14
Scopus citations®
without self-citations
10
OpenCitations
 
9
OpenAlex citations
 
23

Bibliography


Similar publications



Contact ORBi