Profil

Leroy Julien

Département de mathématique > Mathématiques discrètes

Mathematics

See author's contact details
Main Referenced Co-authors
Rigo, Michel  (14)
Berthé, Valérie (10)
Dolce, Francesco (10)
Perrin, Dominique (10)
Charlier, Emilie  (9)
Main Referenced Keywords
Binomial coefficients (4); Language Theory (3); Pascal triangle (3); Computer Science - Discrete Mathematics (2); Mathematics - Dynamical Systems (2);
Main Referenced Disciplines
Mathematics (101)
Computer science (1)

Publications (total 101)

The most downloaded
612 downloads
Leroy, J., Rigo, M., & Stipulanti, M. (2016). Generalized Pascal triangle for binomial coefficients of words. Advances in Applied Mathematics, 80, 24-47. doi:10.1016/j.aam.2016.04.006 https://hdl.handle.net/2268/192271

The most cited

51 citations (OpenAlex)

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). Acyclic, connected and tree sets. Monatshefte für Mathematik, 176 (4), 521–550. doi:10.1007/s00605-014-0721-4 https://hdl.handle.net/2268/174949

Gheeraert, F., Goulet-Ouellet, H., Leroy, J., & Stas, P. (2024). Algebraic characterization of dendricity. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/320347.

Cabezas Aros, C., & Leroy, J. (2024). Decidability of the isomorphism problem between multidimensional substitutive subshifts. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/320346.

Gheeraert, F., & Leroy, J. (2022). S-adic characterization of minimal dendric shifts. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/313037.

Durand, F., & Leroy, J. (2022). Decidability of the isomorphism and the factorization between minimal substitution subshifts. Discrete Analysis. doi:10.19086/da.36901
Peer Reviewed verified by ORBi

Cassaigne, J., Labbé, S., & Leroy, J. (2022). Almost everywhere balanced sequences of complexity 2n+1. Moscow Journal of Combinatorics and Number Theory.
Peer reviewed

Leroy, J. (2022). Understanding dendricity through S-adic expansions [Paper presentation]. Mons theoretical Computer Science Days 2022, Prague, Czechia.

Gheeraert, F., Lejeune, M., & Leroy, J. (2021). S-adic characterization of minimal ternary dendric shifts. Ergodic Theory and Dynamical Systems. doi:10.1017/etds.2021.84
Peer Reviewed verified by ORBi

Leroy, J. (15 January 2021). Factorisation de sous-shifts substitutifs minimaux [Paper presentation]. Séminaire Teichmuller, Marseille, France.

Leroy, J. (2021). Rauzy graphs, S-adicity and dendricity [Paper presentation]. Words 2021, Rouen, France.

Berthé, V., Bernales, P. C., Durand, F., Leroy, J., Perrin, D., & Petite, S. (2020). On The Dimension Group of Unimodular S-Adic Subshifts. Monatshefte für Mathematik. doi:10.1007/s00605-020-01488-3
Peer Reviewed verified by ORBi

Leroy, J. (September 2020). Minimal dendric subshifts [Paper presentation]. Mons theoretical computer sciences days, Prague, Czechia.

Leroy, J. (September 2020). Nombres irrationnels: représentations périodiques et géométriques [Paper presentation]. Belgian Summer School of Mathematics, Bruxelles, Belgium.

Leroy, J. (July 2020). Factor complexity of minimal S-adic subshifts [Paper presentation]. Dyadisc 4, Open problems for weak complexity dynamical systems, Amiens, France.

Leroy, J. (20 March 2020). Sous-shifts dendriques et automorphismes du groupe libre [Paper presentation]. Séminaire Pytheas Fogg, Marseille, France.

Lejeune, M., Leroy, J., & Rigo, M. (2020). Computing the k-binomial complexity of the Thue–Morse word. Journal of Combinatorial Theory. Series A, 176. doi:10.1016/j.jcta.2020.105284
Peer Reviewed verified by ORBi

Leroy, J. (December 2019). Graphes de Rauzy et complexité linéaire [Paper presentation]. Journées seqBIM.

Berthé, V., Cecchi Bernales, P., Durand, F., Leroy, J., Perrin, D., & Petite, S. (2019). On the dimension group of unimodular S-adic subshifts. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/243218.

Leroy, J. (October 2019). Un théorème de Cobham pour les attracteurs d’IFS [Paper presentation]. Journées du GdR Analyse Multifractale.

Leroy, J. (July 2019). Decidability of the isomorphism and the factorization between minimal substitution subshifts [Paper presentation]. Dyadisc3 : Decidability and dynamical systems.

Leroy, J. (June 2019). Decidability of the isomorphism and the factorization between minimal substitution subshifts [Paper presentation]. Journées SDA2 2019 : Systèmes Dynamiques, Automates & Algorithmes, Orsay, France.

Leroy, J. (10 January 2019). Decidability of the isomorphism and the factorization between minimal substitution subshifts [Paper presentation]. Séminaire de mathématiques discrètes.

Charlier, E., Leroy, J., & Rigo, M. (2019). Preface. In Special issue: Developments in Language Theory (DLT 2017). World Scientific Publishing Company. doi:10.1142/S0129054119020015

Charlier, E., Rigo, M., & Leroy, J. (Eds.). (2019). Special issue: Developments in Language Theory (DLT 2017). International Journal of Foundations of Computer Science, 30.
Peer Reviewed verified by ORBi

Lejeune, M., Leroy, J., & Rigo, M. (2019). Computing the k-binomial complextiy of the Thue-Morse word. Lecture Notes in Computer Science, 11647, 278-291. doi:10.1007/978-3-030-24886-4_21
Peer reviewed

Leroy, J. (December 2018). Decidability of the isomorphism and the factorization between minimal substitution subshifts [Paper presentation]. Informal workshop on aperiodic order.

Leroy, J. (2018). Initiation à la programmation en Python [Paper presentation]. Formation MATh.en.JEANS.

Leroy, J. (September 2018). Rigidity and Substitutive Dendric Words [Paper presentation]. Journées Montoises d'Informatique Théorique 2018.

Berthé, V., Dolce, F., Durand, F., Leroy, J., & Perrin, D. (2018). Rigidity and substitutive dendric words. International Journal of Foundations of Computer Science, 29 (5), 705-720. doi:10.1142/S0129054118420017
Peer Reviewed verified by ORBi

Durand, F., & Leroy, J. (2018). Decidability of the isomorphism and the factorization between minimal substitution subshifts. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/227224.

Charlier, E., Ernst, M., Esser, C., Haine, Y., Lacroix, A., Leroy, J., Raskin, J., & Swan, Y. (Eds.). (2018). MATh.en.JEANS. MATh.en.JEANS.be.

Leroy, J., Rigo, M., & Stipulanti, M. (2018). Counting Subwords Occurrences in Base-b Expansions. Integers, 18A, 13, 32.
Peer Reviewed verified by ORBi

Charlier, E., Leroy, J., & Rigo, M. (2017). Preface. In Developments in Language Theory. Springer Verlag. doi:10.1007/978-3-319-62809-7

Berthé, V., De Felice, C., Delecroix, V., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (July 2017). Specular sets. Theoretical Computer Science, 684, 3-28. doi:10.1016/j.tcs.2017.03.001
Peer Reviewed verified by ORBi

Cassaigne, J., Labbé, S., & Leroy, J. (2017). Balanced sequences of complexity 2n+1. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/212151.

Leroy, J. (April 2017). Asymptotic behavior of regular sequences [Paper presentation]. Bridges between Automatic Sequences, Algebra and Number Theory.

Leroy, J., Rigo, M., & Stipulanti, M. (03 March 2017). Behavior of digital sequences through exotic numeration systems. Electronic Journal of Combinatorics, 24 (1), 1.44, 36. doi:10.37236/6581
Peer Reviewed verified by ORBi

Durand, F., & Leroy, J. (February 2017). The constant of recognizability is computable for primitive morphisms. Journal of Integer Sequences, 20 (4).
Peer reviewed

Cassaigne, J., Labbé, S., & Leroy, J. (2017). A set of sequences of complexity $2n+1$. In Combinatorics on words (pp. 144-156). Springer, Cham. doi:10.1007/978-3-319-66396-8_14
Peer reviewed

Charlier, E., Leroy, J., & Rigo, M. (Eds.). (2017). Developments in Language Theory. Lecture Notes in Computer Science, 10396.
Peer reviewed

Leroy, J., Rigo, M., & Stipulanti, M. (2017). Counting the number of non-zero coefficients in rows of generalized Pascal triangles. Discrete Mathematics, 340, 862-881. doi:10.1016/j.disc.2017.01.003
Peer Reviewed verified by ORBi

Charlier, E., Leroy, J., & Rigo, M. (2017). Foreword to the special issue dedicated to the sixteenth "Journées Montoises d'Informatique Théorique". In special issue RAIRO ITA (pp. 167). EDP Sciences. doi:10.1051/ita/2018001

Charlier, E., Leroy, J., & Rigo, M. (Eds.). (2017). Special issue dedicated to the 16th "Journées Montoises d'Informatique Théorique". RAIRO: Informatique Théorique et Applications, 51.
Peer Reviewed verified by ORBi

Dolce, F., Kyriakoglou, R., & Leroy, J. (2017). Decidable properties of extension graphs for substitutive languages. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/206392.

Dolce, F., Kyriakoglou, R., & Leroy, J. (2016). Decidable properties of extension graphs for substitutive languages. In Local proceedings of Mons Theoretical Computer Science Days.
Peer reviewed

Charlier, E., Leroy, J., & Rigo, M. (01 July 2016). Asymptotic properties of free monoid morphisms. Linear Algebra and its Applications, 500, 119-148. doi:10.1016/j.laa.2016.02.030
Peer Reviewed verified by ORBi

Leroy, J. (June 2016). Groupe de dimension de système dynamique, partie 1 [Paper presentation]. Groupe de travail à l'IRIF.

Leroy, J. (June 2016). Groupe de dimension de système dynamique, partie 2 [Paper presentation]. Groupe de travail au LIGM.

Leroy, J. (June 2016). Factorization of minimal substitutive subshifts [Paper presentation]. Transversal aspects of tilings.

Leroy, J. (March 2016). Return words and factor complexity [Paper presentation]. Challenges in combinatorics on words.

Leroy, J. (22 January 2016). Mots de retour, récurrence et représentations S-adiques [Paper presentation]. Workshop sur les semi-groupes profinis, Marne-la-Vallée, France.

Leroy, J., Rigo, M., & Stipulanti, M. (2016). Generalized Pascal triangle for binomial coefficients of words. Advances in Applied Mathematics, 80, 24-47. doi:10.1016/j.aam.2016.04.006
Peer Reviewed verified by ORBi

Labbé, S., & Leroy, J. (2016). Bispecial factors in the Brun S-adic system. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/196278.

Labbé, S., & Leroy, J. (2016). Bispecial Factors in the Brun S-Adic System. In S. V. Brlek & C. Reutenauer (Eds.), Developments in Language Theory: 20th International Conference, DLT 2016, Montréal, Canada, July 25-28, 2016, Proceedings (pp. 280-292). Berlin, Heidelberg, Germany: Springer Berlin Heidelberg. doi:10.1007/978-3-662-53132-7_23
Peer reviewed

Leroy, J. (September 2015). A logarithmic commensurability theorem for a class of GDIFSs [Poster presentation]. Fractals and related fields III.

Berthé, V., Felice, C., Delecroix, V., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). Specular sets. In F. Manea & D. Nowotka (Eds.), Combinatorics on Words: 10th International Conference, WORDS 2015, Kiel, Germany, September 14-17, 2015, Proceedings (pp. 210-222). Cham, Germany: Springer International Publishing. doi:10.1007/978-3-319-23660-5_18
Peer reviewed

Leroy, J. (May 2015). Cobham's theorem for fractals in R^n [Paper presentation]. Workshop on automatic sequences.

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). Bifix codes and interval exchanges. Journal of Pure and Applied Algebra, 219 (7), 2781–2798. doi:10.1016/j.jpaa.2014.09.028
Peer Reviewed verified by ORBi

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). The finite index basis property. Journal of Pure and Applied Algebra, 219 (7), 2521–2537. doi:10.1016/j.jpaa.2014.09.014
Peer Reviewed verified by ORBi

Leroy, J. (January 2015). Return words and S-adicity of tree sets [Paper presentation]. Discrete mathematics day, Liège, Belgium.

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). Acyclic, connected and tree sets. Monatshefte für Mathematik, 176 (4), 521–550. doi:10.1007/s00605-014-0721-4
Peer Reviewed verified by ORBi

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2015). Maximal bifix decoding. Discrete Mathematics, 338 (5), 725–742. doi:10.1016/j.disc.2014.12.010
Peer Reviewed verified by ORBi

Charlier, E., Leroy, J., & Rigo, M. (2015). An analogue of Cobham's theorem for graph directed iterated function systems. Advances in Mathematics, 280, 86-120. doi:10.1016/j.aim.2015.04.008
Peer Reviewed verified by ORBi

Leroy, J. (December 2014). Topological factors between substitutive subshifts [Paper presentation]. Séminaire de mathématiques discrètes, Liège, Belgium.

Berthé, V., De Felice, C., Dolce, F., Leroy, J., Perrin, D., Reutenauer, C., & Rindone, G. (2014). Return words in tree sets. In Local proceedings of Mons Theoretical Computer Science Days.
Peer reviewed

Leroy, J. (July 2014). Return words in tree sets [Paper presentation]. Séminaire de probabilité et théorie ergodique, Amiens, France.

Leroy, J. (June 2014). Maximal bifix decoding [Paper presentation]. Séminaire de mathématiques discrètes, Liège, Belgium.

Leroy, J. (April 2014). Caractérisation S-adique des sous-shifts minimaux de complexité inférieur à 2n+1 [Paper presentation]. Séminaire de mathématiques discrètes, Chambérry, France.

Leroy, J. (January 2014). Different frameworks for Cobham's theorem in R [Paper presentation]. Representing streams II, Leiden, Netherlands.

Leroy, J. (January 2014). Sequences with complexiy 2n+1 [Paper presentation]. Séminaire d'algorithmique, Marne-la-Vallée, France.

Leroy, J. (2014). An $S$-adic characterization of minimal subshifts with first difference of complexity $1 p(n+1)-p(n)\le2$. Discrete Mathematics and Theoretical Computer Science, 16 (1), 233-286.
Peer Reviewed verified by ORBi

Leroy, J. (2014). Return words in tree sets [Paper presentation]. Mons Theoretical Computer Science Days.

Leroy, J. (December 2013). Cobham's theorem for graph directed iterated function systems [Paper presentation]. Séminaire de mathématiques discrètes, Liège, Belgium.

Leroy, J. (November 2013). A bridge between graph directed iterated function systems and Büchi automata [Paper presentation]. Workshop on Dynamics, Numeration and Tillings, Florianopolis, Brazil.

Leroy, J. (October 2013). Return words as basis of free groups [Paper presentation]. Séminaire d'équipe de Jean-Luc Marichal, Luxembourg, Luxembourg.

Leroy, J. (September 2013). Factor complexity of S-adic sequences [Paper presentation]. Séminaire de l'équipe DYSCO, Louvain-la-Neuve, Belgium.

Leroy, J. (June 2013). Factor complexity of S-adic sequences [Paper presentation]. Workshop on Dynamical systems, Automata and Algorithm of the GdR-IM, Amiens, France.

Durand, F., Leroy, J., & Richomme, G. (March 2013). Do the properties of an $S$-adic representation determine factor complexity? Journal of Integer Sequences, 16 (2), 13.2.6, 30.
Peer reviewed

Leroy, J., & Richomme, G. (January 2013). A combinatorial proof of S-adicity for sequences with linear complexity. Integers, 13, 5, 19.
Peer Reviewed verified by ORBi

Durand, F., & Leroy, J. (October 2012). $S$-adic conjecture and Bratteli diagrams. Comptes Rendus de l'Académie des Sciences. Série I. Mathématique, 350 (21-22), 979-983. doi:10.1016/j.crma.2012.10.015
Peer Reviewed verified by ORBi

Leroy, J. (October 2012). An attempt to represent functions using Büchi automata [Paper presentation]. Séminaire de l'équipe de Jean-Luc Marichal, Luxembourg, Luxembourg.

Leroy, J. (July 2012). S-adic representations using Rauzy graphs [Paper presentation]. Workshop on Decidability problems for substitutive sequences, tilings and numerations of the ANR SubTiles, Amiens, France.

Leroy, J. (June 2012). Overview of the S-adic conjecture [Paper presentation]. Séminaire de l'équipe de topologie et dynamique de Paris Sud, Paris, France.

Leroy, J. (February 2012). Overview of the S-adic conjecture [Paper presentation]. Outstanding challenges in combinatorics on words, Banff, Canada.

Leroy, J. (2012). Contribution à la résolution de la conjecture S-adique [Doctoral thesis, UPJV - Université de Picardie Jules Verne]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/192373

Leroy, J. (January 2012). Overview of the S-adic conjecture [Paper presentation]. Premier Congrès Franco-Chilien en Dynamique et Combinatoire, Cap Hornu, France.

Leroy, J. (January 2012). Some improvements of the S-adic conjecture. Advances in Applied Mathematics, 48 (1), 79-98. doi:10.1016/j.aam.2011.03.005
Peer Reviewed verified by ORBi

Leroy, J. (June 2011). Exemples et contre-exemples sur la conjecture S-adique [Paper presentation]. Séminaire de l'équipe ARITH, Montpellier, France.

Leroy, J. (2011). Examples and counter-examples about the S-adic conjecture. In Local proceedings of Numeration 2011.
Peer reviewed

Leroy, J. (June 2011). Overview of the S-adic conjecture [Paper presentation]. First european meeting of Ph. D. Students in mathematics, Amiens, France.

Leroy, J. (March 2011). Some improvements of the S-adic conjecture [Paper presentation]. Ecole jeunes chercheurs en Informatique Théorique, Amiens, France.

Leroy, J. (March 2011). Conjecture S-adique [Paper presentation]. Journée des doctorants d'Amiens, Amiens, France.

Leroy, J. (2011). Examples and counter-examples about the S-adic conjecture [Paper presentation]. Numeration 2011.

Leroy, J. (December 2010). The S-adic conjecture: general case and complexity 2n [Paper presentation]. School on Information and Randomness, Pucon, Chile.

Leroy, J. (October 2010). Conjecture S-adique [Paper presentation]. Séminaire Pythéas Fogg, Marseille, France.

Leroy, J. (2010). Some improvements of the S-adic conjecture (extended abstract). In Local proceedings of Mons Theoretical Computer Science Days.
Peer reviewed

Leroy, J. (May 2010). Initiation à Sage [Paper presentation]. Séminaire de probabilité et théorie ergodique, Amiens, France.

Leroy, J. (2010). Some improvements of the S-adic conjecture (extended abstract) [Paper presentation]. Mons Theoretical Computer Science Days.

Leroy, J. (September 2009). Autour de la conjecture S-adique [Paper presentation]. Séminaire de probabilité et théorie ergodique, Amiens, France.

Leroy, J. (October 2008). Systèmes de numération en base rationnelle [Paper presentation]. Séminaire des doctorants, Amiens, France.

Leroy, J. (2008). Les systèmes de numération en base rationnelle [Master’s dissertation, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/221860

Leroy, J. (2007). Les groupes automatiques [Master’s dissertation, ULiège - Université de Liège]. ORBi-University of Liège. https://orbi.uliege.be/handle/2268/221861

Contact ORBi