Unusual resistivity hysteresis in a bulk magnetoresistive ferromagnetic/ferrimagnetic composite (La0.7Ca0.3MnO3/Mn3O4): Role of demagnetization effects - 2007
Unusual resistivity hysteresis in a bulk magnetoresistive ferromagnetic/ferrimagnetic composite (La0.7Ca0.3MnO3/Mn3O4): Role of demagnetization effects
[en] The authors report an intriguing resistivity versus magnetic field dependence in polycrystalline composite samples containing a magnetoresistive manganite (ferromagnetic/conducting La0.7Ca0.3MnO3) and a magnetic manganese oxide (ferrimagnetic/insulating Mn3O4). At 10 K, when the magnetic field is scanned from positive to negative values, the resistance peak occurs at positive magnetic field, instead of zero or negative field as usually observed in polycrystalline manganite samples. The position of the resistance peak agrees well with the cancellation of the internal magnetic field, suggesting that the demagnetization effects are responsible for this behavior. (c) 2007 American Institute of Physics.
Centre/Unité de recherche :
SUPRATECS - Services Universitaires pour la Recherche et les Applications Technologiques de Matériaux Électro-Céramiques, Composites, Supraconducteurs - ULiège
Vanderbemden, Philippe ; Université de Liège - ULiège > Capteurs et systèmes de mesures électriques
Langue du document :
Anglais
Titre :
Unusual resistivity hysteresis in a bulk magnetoresistive ferromagnetic/ferrimagnetic composite (La0.7Ca0.3MnO3/Mn3O4): Role of demagnetization effects
Date de publication/diffusion :
août 2007
Titre du périodique :
Applied Physics Letters
ISSN :
0003-6951
eISSN :
1077-3118
Maison d'édition :
Amer Inst Physics, Melville, Etats-Unis - New York
F.R.S.-FNRS - Fonds de la Recherche Scientifique UE - Union Européenne
Commentaire :
Copyright (2007) American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.
The following article appeared in Appl. Phys. Lett. 91, 062514 (2007) and may be found at http://link.aip.org/link/?APPLAB/91/062514/1.
Ph. Vanderbemden, B. Vertruyen, A. Rulmont, R. Cloots, G. Dhalenne, and M. Ausloos, Phys. Rev. B 68, 224418 (2003).
B. Vertruyen, R. Cloots, A. Rulmont, G. Dhalenne, M. Ausloos, and Ph. Vanderbemden, J. Appl. Phys. 90, 5692 (2001).
J. M. D. Coey, M. Viret, and S. von Molnar, Adv. Phys. 48, 167 (1999).
M. Ziese, Rep. Prog. Phys. 65, 143 (2002).
A. Gupta and J. Z. Sun, J. Magn. Magn. Mater. 200, 24 (1999).
S. Valencia, O. Castao, J. Fontcuberta, B. Martínez, and Ll. Balcells, J. Appl. Phys. 94, 2524 (2003).
L. E. Hueso, J. Rivas, F. Rivadulla, and M. A. Lopez-Quintela, J. Appl. Phys. 89, 1746 (2001).
D. K. Petrov, L. Krusin-Elbaum, J. Z. Sun, C. Feild, and P. R. Duncombe, Appl. Phys. Lett. 75, 995 (1999).
K. Dwight and N. Menyuk, Phys. Rev. 119, 1470 (1960).
B. Vertruyen, A. Rulmont, R. Cloots, J.-F. Fagnard, M. Ausloos, I. Vandriessche, and S. Hoste, J. Mater. Sci. 40, 117 (2005).
X. W. Li, A. Gupta, G. Xiao, and G. Q. Gong, Appl. Phys. Lett. 71, 1124 (1997).
J. N. Eckstein, I. Bozovic, J. O'Donnell, M. Onellion, and M. S. Rzchowski, Appl. Phys. Lett. 69, 1312 (1996).
H. S. Wang, Q. Li, K. Liu, and C. L. Chien, Appl. Phys. Lett. 74, 2212 (1999).
B. Vertruyen, R. Cloots, M. Ausloos, J.-F. Fagnard, and Ph. Vanderbemden, Phys. Rev. B 75, 165112 (2007).
J. D. Livingtson, A. E. Berkowitz, and J. L. Walter, IEEE Trans. Magn. 15, 1295 (1979).
A. Aharoni, J. Appl. Phys. 83, 3432 (1998).
J. E. Evetts, M. G. Blamire, N. D. Mathur, S. P. Isaac, B. S. Teo, L. F. Cohen, and J. L. MacManus-Driscoll, Philos. Trans. R. Soc. London, Ser. A 356, 1593 (1998).
T. Suzuki, K. Adachi, and T. Katsufuji, J. Magn. Magn. Mater. 310, 780 (2007).
H. Szymczak, J. Magn. Magn. Mater. 210, 186 (2000).