Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones
[en] Several non-beta-lactam compounds were active against various gram-positive and gram-negative bacterial strains. The MICs of arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones were lower than those of ampicillin and cefotaxime for methicillin-resistant Staphylococcus aureus M1339 and vancomycin-resistant Enterococcus faecium EF12. Several compounds were found to inhibit the cell wall synthesis of S. aureus and the last two steps of peptidoglycan biosynthesis catalyzed by ether-treated cells of Escherichia coli or cell wall membrane preparations of Bacillus megaterium. The effects of the arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-one derivatives on E. coli PBP 3 and PBP 5, Streptococcus pneumoniae PBP 2xS (PBP 2x from a penicillin-sensitive strain) and PBP 2xR (PBP 2x from a penicillin-resistant strain), low-affinity PBP 2a of S. aureus, and the Actinomadura sp. strain R39 and Streptomyces sp. strain R61 DD-peptidases were studied. Some of the compounds exhibited inhibitory activities in the 10 to 100 muM concentration range. The inhibition of PBP 2xS by several of them appeared to be noncompetitive. The dissociation constant for the best inhibitor (K-i = 10 muM) was not influenced by the presence of the substrate.
Zervosen, Astrid ; Université de Liège - ULiège > Centre de recherches du cyclotron
Lu, Wei-Ping
Chen, Zhouliang
White, Ronald E.
Demuth, Thomas P.
Frère, Jean-Marie ; Université de Liège - ULiège > Département des sciences de la vie > Département des sciences de la vie
Language :
English
Title :
Interactions between penicillin-binding proteins (PBPs) and two novel classes of PBP inhibitors, arylalkylidene rhodanines and arylalkylidene iminothiazolidin-4-ones
Publication date :
March 2004
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
Amer Soc Microbiology, Washington, United States - Washington
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Adam, M., C. Damblon, B. Plaitin, L. Christiaens, and J.-M. Frère. 1990. Chromogenic depsipeptide substrates for β-lactamases and penicillin-senitive DD-peptidases. Biochem. J. 270:525-529.
Adam, M., C. Damblon, M. Jamin, W. Zorzi, V. Dusart, M. Galleni, A. El Kharroubi, G. Piras, B. G. Spratt, W. Keck, J. Coyette, J.-M. Ghuysen, M. Nguyen-Distèche, and J. M. Frère. 1991. Acyltransferase activities of the high-molecular-mass essential penicillin-binding proteins. Biochem. J. 279:601-604.
Adam, M., C. Fraipont, N. Rhazi, M. Nguyen-Distèche, B. Lakaye, J.-M. Frère, B. Devreese, J. van Beeumen, Y. Van Heijenoort, J. van Heijenoort, and J.-M. Ghuysen. 1997. The bimodular G57-V577 polypeptide chain of the class B penicillin-binding protein 3 of Escherichia coli catalyzes peptide bond formation from thiolesters and does not catalyze glycan chain polymerization from lipid II intermediate. J. Bacteriol. 197:6005-6009.
Andersson, I., A. C. Terwisscha van Scheltinga, and K. Valegard. 2001. Towards new β-lactam antibiotics. Cell. Mol. Life Sci. 58:1897-1906.
Baizman, E. R., A. A. Branstrom, C. B. Longley, N. Allanson, M. J. Sofia, D. Gange, and R. C. Goldman. 2000. Antibacterial activity of synthetic analogues based on the disaccharide structure of moenomycin, an inhibitor of bacterial transglycosylase. Microbiology 146:3129-3140.
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254.
Broetz, H., G. Bierbaum, P. E. Reynolds, and H.-G. Sahl. 1997. The lantibiotic mersacidin inhibits peptidoglycan biosynthesis at the level of transglycosylation. Eur. J. Biochem. 246:193-199.
Chambers, H. F. 2003. Solving staphylococcal resistance to β-lactams. Trends Microbiol. 11:145-148.
Copeland, R. A. 1996. Tight binding inhibitors, p. 225-261. In R. A. Copeland (ed.), Enzymes: a practical introduction to structure, mechanism and data analysis. VCH Publishers, Inc., New York, N.Y.
De Meester, F., B. Joris, G. Reckinger, C. Bellefroid-Bourguignon, and J.-M. Frère. 1987. Automated analysis of enzyme inactivation phenomena. Biochem. Pharmacol. 36:2393-2403.
Frère, J.-M., J.-M. Ghuysen, and H. P. Perkins. 1975. Interaction between the exocellular DD-carboxypeptidase-transpeptidase from Streptomyces R61, substrate and β-lactam antibiotics. Eur. J. Biochem. 57:353-359.
Frère, J.-M. 1995. Beta-lactamases and bacterial resistance to antibiotics. Mol. Microbiol. 16:385-395.
Frère, J.-M., M. Nguyen-Distèche, J. Coyette, and B. Joris. 1992. Mode of action: interaction with the penicillin binding proteins, p. 148-195. In M. Page (ed.), The chemistry of beta-lactams. Chapman and Hall, Glasgow, Scotland.
Frère, J.-M. 1998. Actinomadura R39 D-Ala-D-Ala carboxypeptidase, p. 439-441. In A. J. Barrett, N. D. Rawlings, and J. F. Woessner (ed.), Handbook of proteolytic enzymes. Academic Press, Inc., New York, N.Y.
Frère, J. M. 1998. Streptomyces R61 D-Ala-D-Ala carboxypeptidase, p. 427-430. In A. J. Barrett, N. D. Rawlings, and J. F. Woessner (ed.) Handbook of proteolytic enzymes. Academic Press, Inc., New York, N.Y.
Galleni, M., B. Lakaye, S. Lepage, M. Jamin, I. Thamm, B. Joris, and J.-M. Frère. 1993. A new, highly sensitive method for the detection and quantification of penicillin-binding proteins. Biochem. J. 291:19-21.
Ge, M., Z. Chen, H. R. Onishi, J. Kohler, L. L. Silver, R. Kerns, S. Fukuzawa, C. Thompson, and D. Kahne. 1999. Vancomycin derivatives that inhibit peptidoglycan biosynthesis without binding D-Ala-D-Ala. Science 284:507-510.
Granier, B., M. Jamin, M. Adam, M. Galleni, B. Lakaye, W. Zorzi, J. Grandchamps, J.-M. Wilkin, C. Fraipont, B. Joris, C. Duez, M. Nguyen-Distèche, J. Coyette, M. Leyh-Bouille, J. Dusart, L. Christiaens, J.-M. Frère, and J.-M. Ghuysen. 1994. Serine-type D-Ala-D-Ala peptidases and penicillin-binding proteins. Methods Enzymol. 244:249-267.
Grant, E. B., D. Guiadeen, E. Z. Baum, B. D. Foleno, H. Jin, D. A. Montenegro, E. A. Nelson, K. Bush, and D. J. Hlasta. 2000. The synthesis and SAR of rhodanines as novel class C β-lactamase inhibitors. Bioorg. Med. Chem. Lett. 10:2179-2182.
Jamin, M., C. Damblon, S. Millier, R. Hakenbeck, and J.-M. Frère. 1993. Penicillin-binding protein 2x of Streptococcus pneumoniae: enzymic activities and interactions with β-lactams. Biochem. J. 292:735-741.
Jamin, M., R. Hakenbeck, and J.-M. Frère. 1993. Penicillin binding protein 2x as a major contributor to intrinsic β-lactam resistance of Streptococcus pneumoniae. FEBS Lett. 331:101-104.
Laible, G., B. G. Spratt, and R. Hakenbeck. 1991. Interspecies recombinational events during the evolution of altered PBP2x genes in penicillin-resistant clinical isolates of Streptococcus pneumoniae. Mol. Microbiol. 5:1993-2002.
Lakaye, B., C. Damblon, M. Jamin, M. Galleni, S. Lepage, B. Joris, J. Marchand-Brynaert, C. Frydrych, and J.-M. Frère. 1994. Synthesis, purification and kinetic properties of fluorescein-labelled penicillins. Biochem. J. 300:141-145.
Lu, W.-P., Y. Sun, M. D. Bauer, S. Paule, P. M. Koenigs, and W. G. Kraft. 1999. Penicillin-binding protein 2a from methicillin-resistant Staphylococcus aureus: kinetic characterization of its interactions with beta-lactams using electrospray mass spectrometry. Biochemistry 38:6537-6546.
Lu, W.-P., E. Kincaid, Y. Sun, and M. D. Bauer. 2001. Kinetics of β-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneumoniae. J. Biol. Chem. 276:31494-31501.
Matagne, A., A. Dubus, M. Galleni, and J.-M. Frère. 1999. The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity. Nat. Prod. Rep. 16:1-19.
Mouz, N., E. Gordon, A. M. Di Guilmi, I. Petit, Y. Petillot, Y. Dupont, R. Hakenbeck, T. Vernet, and O. Dideberg. 1998. Identification of a structural determinant for resistance to beta-lactam antibiotics in gram-positive bacteria. Proc. Natl. Acad. Sci. USA 95:13403-13406.
Roychoudhury, S., J. L. Brill, W.-P. Lu, R. E. White, Z. Chen, and T. P. Demuth. 2003. Development of a screening assay to measure the loss of antibacterial activities in the presence of proteins: its use in optimizing compound structure. J. Biomol. Screen. 8:555-558.
Terrak, M., T. K. Ghosh, J. van Heijenoort, J. van Beeumen, M. Lampilas, J. Aszodi, J. A. Ayala, J.-M. Ghuysen, and M. Nguyen-Distèche. 1999. The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan-polymerizing penicillin-binding protein 1b of Escherichia coli. Mol. Microbiol. 34:350-364.
Vosberg, H.-P., and H. Hoffmann-Berling. 1971. DNA synthesis in nucleotide-permeable Escherichia coli cells. J. Mol. Biol. 58:739-753.
Wilkin, J.-M. 1998. Penicillin-binding protein 5, a serine type D-Ala-D-Ala carboxypeptidase. In A. J. Barrett, N. D. Rawlings, and J. F. Woessner (ed.), Handbook of proteolytic enzymes. Academic Press, Inc., New York, N.Y.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.