Sensitivity analysis of circadian entrainment in the space of phase response curves
Sacré, Pierre; Sepulchre, Rodolphe
2014 • In Kulkarni, Vishwesh V.; Stan, Guy-Bart; Raman, Karthik (Eds.) A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems
[en] Sensitivity analysis is a classical and fundamental tool to evaluate the role of a given parameter in a given system characteristic. Because the phase response curve is a fundamental input–output characteristic of oscillators, we developed a sensitivity analysis for oscillator models in the space of phase response curves. The proposed tool can be applied to high-dimensional oscillator models without facing the curse of dimensionality obstacle associated with numerical exploration of the parameter space. Application of this tool to a state-of-the-art model of circadian rhythms suggests that it can be useful and instrumental to biological investigations.
Disciplines :
Engineering, computing & technology: Multidisciplinary, general & others
Author, co-author :
Sacré, Pierre ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Sepulchre, Rodolphe ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Language :
English
Title :
Sensitivity analysis of circadian entrainment in the space of phase response curves
Publication date :
2014
Main work title :
A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems
Ascher UM, Mattheij RMM, Russell RD (1988) Numerical solution of boundary value problems for ordinary differential equations. Prentice Hall, Englewood Cliffs
Bagheri N, Stelling J, Doyle FJ III (2007) Quantitative performance metrics for robustness in circadian rhythms. Bioinformatics 23(3):358-364
Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, Simon MC, Takahashi JS,BradfieldCA(2000) Mop3 is an essential component of themaster circadian pacemaker in mammals. Cell 103(7):1009-1017
Ermentrout GB, Kopell N (1984) Frequency plateaus in a chain of weakly coupled oscillators I. SIAM J Math Anal 15(2):215-237
Farkas M (1994) Periodic motions, applied mathematical sciences, vol 104. Springer, New York
Gonze D, Halloy J, Goldbeter A (2002) Robustness of circadian rhythms with respect to molecular noise. Proc Natl Acad Sci USA 99(2):673-678
Gunawan R, Doyle FJ III (2007) Phase sensitivity analysis of circadian rhythm entrainment. J Biol Rhythms 22(2):180-194
Hafner M, Koeppl H, Hasler M, Wagner A (2009) 'Glocal' robustness analysis and model discrimination for circadian oscillators. PLoS Comput Biol 5(10):e1000,534
Hafner M, Sacré P, Symul L, Sepulchre R,KoepplH(2010) Multiple feedback loops in circadian cycles: robustness and entrainment as selection criteria. In: Proceedings of the 7th international workshop computational systems biology, Luxembourg, Luxembourg, pp 51-54
Hastings MH (2000) Circadian clockwork: two loops are better than one. Nat Rev Neurosci 1(2):143-146
Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks, applied mathematical sciences, vol 126. Springer, New York
Ingalls BP (2004) Autonomously oscillating biochemical systems: parametric sensitivity of extrema and period. Syst Biol 1(1):62-70
Khalil HK (2002) Nonlinear systems, 3rd edn. Prentice Hall, Upper Saddle River
Kramer MA, Rabitz H, Calo JM (1984) Sensitivity analysis of oscillatory systems. Appl Math Model 8(5):328-340
Kuramoto Y (1984) Chemical oscillations, waves, and turbulence. Springer series in synergetics, vol 19, 1st edn. Springer, Berlin
Leloup JC, Goldbeter A (2003) Toward a detailed computational model for the mammalian circadian clock. Proc Natl Acad Sci USA 100(12):7051-7056
Leloup JC, Goldbeter A (2004) Modeling the mammalian circadian clock: sensitivity analysis and multiplicity of oscillatory mechanisms. J Theor Biol 230(4):541-562
Malkin IG (1949) Themethods ofLyapunov and Poincare in the theory of nonlinear oscillations. Gostexizdat, Moscow
Malkin IG (1956) Some problems in the theory of nonlinear oscillations. Gostexizdat, Moscow
Neu JC (1979) Coupled chemical oscillators. SIAM J Appl Math 37(2):307-315
Pfeuty B, Thommen Q, LefrancM(2011) Robust entrainment of circadian oscillators requires specific phase response curves. Biophys J 100(11):2557-2565
Pittendrigh CS (1981) Circadian systems: entrainment. In: Aschoff J (ed) Biological rhythms. Plenum Press, New York, pp 95-124
Rosenwasser E, Yusupov R (1999) Sensitivity of automatic control systems. CRC Press, Boca Raton
Sacré P, Sepulchre R (2012) System analysis of oscillator models in the space of phase response curves. arXiv math.DS
Sepulchre R (2006) Oscillators as systems and synchrony as a design principle. In: Current trends in nonlinear systems and control. In honor of Petar Kokotovíc and Turi Nicosia. Birkhäuser, Boston, MA, pp 123-141
Seydel R (2010) Practical bifurcation and stability analysis. Interdisciplinary Applied Mathematics, vol 5, 3rd edn. Springer, New York
Stelling J,Gilles ED, Doyle III FJ (2004) Robustness properties of circadian clock architectures. Proc Natl Acad Sci USA 101(36):13210-13215
Wilkins AK, Barton PI, Tidor B (2007) The Per2 negative feedback loop sets the period in the mammalian circadian clock mechanism. PLoS Comput Biol 3(12):e242
von Gall C, Noton E, Lee C, Weaver DR (2003) Light does not degrade the constitutively expressed BMAL1 protein in the mouse suprachiasmatic nucleus. Eur J Neurosci 18(1):125-133
Wilkins AK, Tidor B, White J, Barton PI (2009) Sensitivity analysis for oscillating dynamical systems. SIAM J Sci Comput 31(4):2706-2732
Winfree AT (1967) Biological rhythms and the behavior of populations of coupled oscillators. J Theor Biol 16(1):15-42
Winfree AT (1980) The geometry of biological time. Biomathematics, vol 8, 1st edn. Springer, New York