Crystal Structure of the Extended-Spectrum β -Lactamase PER-2 and Insights into the Role of Specific Residues in the Interaction with β -Lactams and β -Lactamase Inhibitors
[en] PER-2 belongs to a small (7 members to date) group of extended-spectrum beta-lactamases. It has 88% amino acid identity with PER-1 and both display high catalytic efficiencies toward most beta-lactams. In this study, we determined the X-ray structure of PER-2 at 2.20 A and evaluated the possible role of several residues in the structure and activity toward beta-lactams and mechanism-based inhibitors. PER-2 is defined by the presence of a singular trans bond between residues 166 to 167, which generates an inverted Omega loop, an expanded fold of this domain that results in a wide active site cavity that allows for efficient hydrolysis of antibiotics like the oxyimino-cephalosporins, and a series of exclusive interactions between residues not frequently involved in the stabilization of the active site in other class A beta-lactamases. PER beta-lactamases might be included within a cluster of evolutionarily related enzymes harboring the conserved residues Asp136 and Asn179. Other signature residues that define these enzymes seem to be Gln69, Arg220, Thr237, and probably Arg/Lys240A ("A" indicates an insertion according to Ambler's scheme for residue numbering in PER beta-lactamases), with structurally important roles in the stabilization of the active site and proper orientation of catalytic water molecules, among others. We propose, supported by simulated models of PER-2 in combination with different beta-lactams, the presence of a hydrogen-bond network connecting Ser70-Gln69-water-Thr237-Arg220 that might be important for the proper activity and inhibition of the enzyme. Therefore, we expect that mutations occurring in these positions will have impacts on the overall hydrolytic behavior.
Research Center/Unit :
CIP - Centre d'Ingénierie des Protéines - ULiège
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Ruggiero, Melina
Kerff, Frédéric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Herman, Raphaël ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Sapunaric, Frédéric
Galleni, Moreno ; Université de Liège - ULiège > Département des sciences de la vie > Macromolécules biologiques
Gutkind, Gabriel
Charlier, Paulette ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
Sauvage, Eric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Power, Pablo
Language :
English
Title :
Crystal Structure of the Extended-Spectrum β -Lactamase PER-2 and Insights into the Role of Specific Residues in the Interaction with β -Lactams and β -Lactamase Inhibitors
Publication date :
2014
Journal title :
Antimicrobial Agents and Chemotherapy
ISSN :
0066-4804
eISSN :
1098-6596
Publisher :
American Society for Microbiology (ASM), Washington, United States - District of Columbia
Volume :
58
Issue :
10
Pages :
5994-6002
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
Copyright (c) 2014, American Society for Microbiology. All Rights Reserved.
Bush K, Jacoby GA. 2010. Updated functional classification of β-lactamases. Antimicrob. Agents Chemother. 54:969-976. http://dx.doi.org/10.1128/AAC.01009-09.
Gutkind GO, Di Conza J, Power P, Radice M. 2013. β-Lactamasemediated resistance: a biochemical, epidemiological and genetic overview. Curr. Pharm. Des. 19:164-208. http://dx.doi.org/10.2174/138161213804070320.
Nordmann P, Ronco E, Naas T, Duport C, Michel-Briand Y, Labia R. 1993. Characterization of a novel extended-spectrum β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37:962-969. http://dx.doi.org/10.1128/AAC.37.5.962.
Vahaboglu H, Dodanli S, Eroglu C, Ozturk R, Soyletir G, Yildirim I, Avkan V. 1996. Characterization of multiple-antibiotic-resistant Salmonella Typhimurium stains: molecular epidemiology of PER-1-producing isolates and evidence for nosocomial plasmid exchange by a clone. J. Clin. Microbiol. 34:2942-2946.
Vahaboglu H, Ozturk R, Aygun G, Coskunkan F, Yaman A, Kaygusuz A, Leblebicioglu H, Balik I, Aydin K, Otkun M. 1997. Widespread detection of PER-1-type extended-spectrum β-lactamases among nosocomial Acinetobacter and Pseudomonas aeruginosa isolates in Turkey: a nationwide multicenter study. Antimicrob. Agents Chemother. 41:2265-2269.
Poirel L, Karim A, Mercat A, Le Thomas I, Vahaboglu H, Richard C, Nordmann P. 1999. Extended-spectrum β-lactamase-producing strain of Acinetobacter baumannii isolated from a patient in France. J. Antimicrob. Chemother. 43:157-158. http://dx.doi.org/10.1093/jac/43.1.157.
Bonnin RA, Potron A, Poirel L, Lecuyer H, Neri R, Nordmann P. 2011. PER-7, an extended-spectrum β-lactamase with increased activity toward broad-spectrum cephalosporins in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55:2424-2427. http://dx.doi.org/10.1128/AAC.01795-10.
Rossi MA, Gutkind G, Quinteros M, Marino E, Couto E, Tokumoto M, Woloj M, Miller G, Medeiros A. 1991. A Proteus mirabilis with a novel extended spectrum β-lactamase and six different aminoglycoside resistance genes, abstr 939, p 255. Abstr. 31st Intersc. Conf. Antimicrob. Agents Chemother. American Society for Microbiology, Washington, DC.
Bauernfeind A, Stemplinger I, Jungwirth R, Mangold P, Amann S, Akalin E, Ang O, Bal C, Casellas JM. 1996. Characterization of β-lactamase gene blaPER-2, which encodes an extended-spectrum class A β-lactamase. Antimicrob. Agents Chemother. 40:616-620.
Quinteros M, Radice M, Gardella N, Rodríguez MM, Costa N, Korbenfeld D, Couto E, Gutkind G, The Microbiology Study Group. 2003. Extended-spectrum β-lactamases in Enterobacteriaceae in Buenos Aires, Argentina, public hospitals. Antimicrob. Agents Chemother. 47:2864-2869. http://dx.doi.org/10.1128/AAC.47.9.2864-2867.2003.
Girlich D, Poirel L, Nordmann P. 2010. PER-6, an extended-spectrum β-lactamase from Aeromonas allosaccharophila. Antimicrob. Agents Chemother. 54:1619-1622. http://dx.doi.org/10.1128/AAC.01585-09.
Power P, Di Conza J, Rodriguez MM, Ghiglione B, Ayala JA, Casellas JM, Radice M, Gutkind G. 2007. Biochemical characterization of PER-2 and genetic environment of blaPER-2. Antimicrob. Agents Chemother. 51: 2359-2365. http://dx.doi.org/10.1128/AAC.01395-06.
Bouthors AT, Delettre J, Mugnier P, Jarlier V, Sougakoff W. 1999. Site-directed mutagenesis of residues 164, 170, 171, 179, 220, 237 and 242 in PER-1 β-lactamase hydrolysing expanded-spectrum cephalosporins. Protein Eng. 12:313-318. http://dx.doi.org/10.1093/protein/12.4.313.
Tranier S, Bouthors AT, Maveyraud L, Guillet V, Sougakoff W, Samama JP. 2000. The high-resolution crystal structure for class A β-lactamase PER-1 reveals the bases for its increase in breadth of activity. J. Biol. Chem. 275:28075-28082. http://dx.doi.org/10.1074/jbc.M003802200.
Bouthors AT, Dagoneau-Blanchard N, Naas T, Nordmann P, Jarlier V, Sougakoff W. 1998. Role of residues 104, 164, 166, 238 and 240 in the substrate profile of PER-1 β-lactamase hydrolysing third-generation cephalosporins. Biochem. J. 330:1443-1449.
Hansen JB, Olsen RH. 1978. Isolation of large bacterial plasmids and characterization of the P2 incompatibility group plasmids pMG1 and pMG5. J. Bacteriol. 135:227-238.
Power P, Radice M, Barberis C, de Mier C, Mollerach M, Maltagliatti M, Vay C, Famiglietti A, Gutkind G. 1999. Cefotaxime-hydrolysing β-lactamases in Morganella morganii. Eur. J. Clin. Microbiol. Infect. Dis. 18:743-747. http://dx.doi.org/10.1007/s100960050391.
Kabsch W. 2010. XDS. Acta Crystallogr. D Biol. Crystallogr. 66:125-132. http://dx.doi.org/10.1107/S0907444909047337.
Kabsch W. 2010. Integration, scaling, space-group assignment and postrefinement. Acta Crystallogr. D Biol. Crystallogr. 66:133-144. http://dx.doi.org/10.1107/S0907444909047374.
Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53:240-255. http://dx.doi.org/10.1107/S0907444996012255.
Painter J, Merritt EA. 2006. Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr. D Biol. Crystallogr. 62:439-450. http://dx.doi.org/10.1107/S0907444906005270.
Emsley P, Cowtan K. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126-2132. http://dx.doi.org/10.1107/S0907444904019158.
Schrödinger. The PyMOL molecular graphics system, version 1.5.0.4. Schrödinger, Portland, OR.
Shimamura T, Ibuka A, Fushinobu S, Wakagi T, Ishiguro M, Ishii Y, Matsuzawa H. 2002. Acyl-intermediate structures of the extendedspectrum class A β-lactamase, Toho-1, in complex with cefotaxime, cephalothin, and benzylpenicillin. J. Biol. Chem. 277:46601-46608. http://dx.doi.org/10.1074/jbc.M207884200.
Padayatti PS, Helfand MS, Totir MA, Carey MP, Carey PR, Bonomo RA, van den Akker F. 2005. High resolution crystal structures of the trans-enamine intermediates formed by sulbactam and clavulanic acid and E166A SHV-1 β-lactamase. J. Biol. Chem. 280:34900-34907. http://dx.doi.org/10.1074/jbc.M505333200.
Krieger E, Darden T, Nabuurs SB, Finkelstein A, Vriend G. 2004. Making optimal use of empirical energy functions: force-field parameterization in crystal space. Proteins 57:678-683. http://dx.doi.org/10.1002/prot.20251.
Krieger E, Joo K, Lee J, Raman S, Thompson J, Tyka M, Baker D, Karplus K. 2009. Improving physical realism, stereochemistry, and sidechain accuracy in homology modeling: four approaches that performed well in CASP8. Proteins 77:114-122. http://dx.doi.org/10.1002/prot.22570.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. 1995. A smooth particle mesh Ewald method. J. Chem. Phys. 103:8577-8593. http://dx.doi.org/10.1063/1.470117.
Pal D, Chakrabarti P. 1998. Different types of interactions involving cysteine sulfhydryl group in proteins. J. Biomol. Struct. Dyn. 15:1059-1072. http://dx.doi.org/10.1080/07391102.1998.10509001.
Tatko CD, Waters ML. 2004. Investigation of the nature of the methionine-pi interaction in β-hairpin peptide model systems. Protein Sci. 13: 2515-2522. http://dx.doi.org/10.1110/ps.04820104.
Bouthors AT, Jarlier V, Sougakoff W. 1998. Amino acid substitutions at positions 69, 165, 244 and 275 of the PER-1 β-lactamase do not impair enzyme inactivation by clavulanate. J. Antimicrob. Chemother. 42:399-401.
Chen CC, Herzberg O. 1999. Relocation of the catalytic carboxylate group in class A β-lactamase: the structure and function of the mutant enzyme Glu166->Gln:Asn170->Asp. Protein Eng. 12:573-579. http://dx.doi.org/10.1093/protein/12.7.573.
Zawadzke LE, Chen CC, Banerjee S, Li Z, Wasch S, Kapadia G, Moult J, Herzberg O. 1996. Elimination of the hydrolytic water molecule in aclass A β-lactamase mutant: crystal structure and kinetics. Biochem. J. 35:16475-16482. http://dx.doi.org/10.1021/bi962242a.
Bret L, Chaibi EB, Chanal-Claris C, Sirot D, Labia R, Sirot J. 1997. Inhibitor-resistant TEM (IRT) β-lactamases with different substitutions at position 244. Antimicrob. Agents Chemother. 41:2547-2549.
Thomson JM, Distler AM, Prati F, Bonomo RA. 2006. Probing active site chemistry in SHV β-lactamase variants at Ambler position 244. Understanding unique properties of inhibitor resistance. J. Biol. Chem. 281: 26734-26744. http://dx.doi.org/10.1074/jbc.M603222200.
Moews PC, Knox JR, Dideberg O, Charlier P, Frere JM. 1990. β-Lactamase of Bacillus licheniformis 749/C at 2 A resolution. Proteins 7:156-171. http://dx.doi.org/10.1002/prot.340070205.
Perez-Llarena FJ, Cartelle M, Mallo S, Beceiro A, Perez A, Villanueva R, Romero A, Bonnet R, Bou G. 2008. Structure-function studies of arginine at position 276 in CTX-M β-lactamases. J. Antimicrob. Chemother. 61:792-797. http://dx.doi.org/10.1093/jac/dkn031.
Marciano DC, Brown NG, Palzkill T. 2009. Analysis of the plasticity of location of the Arg244 positive charge within the active site of the TEM-1 β-lactamase. Protein Sci. 18:2080-2089. http://dx.doi.org/10.1002/pro.220.
Jacob-Dubuisson F, Lamotte-Brasseur J, Dideberg O, Joris B, Frere JM. 1991. Arginine 220 is a critical residue for the catalytic mechanism of the Streptomyces albus G β-lactamase. Protein Eng. 4:811-819. http://dx.doi.org/10.1093/protein/4.7.811.
Papp-Wallace KM, Taracila MA, Smith KM, Xu Y, Bonomo RA. 2012. Understanding the molecular determinants of substrate and inhibitor specificity in the carbapenemase KPC-2: exploring the roles of Arg220 and Glu276. Antimicrob. Agents Chemother. 56:4428-4438. http://dx.doi.org/10.1128/AAC.05769-11.
Matagne A, Frere JM. 1995. Contribution of mutant analysis to the understanding of enzyme catalysis: the case of class A β-lactamases. Biochim. Biophys. Acta 1246:109-127. http://dx.doi.org/10.1016/0167-4838(94)00177-I.
Delmas J, Leyssene D, Dubois D, Birck C, Vazeille E, Robin F, Bonnet R. 2010. Structural insights into substrate recognition and product expulsion in CTX-M enzymes. J. Mol. Biol. 400:108-120. http://dx.doi.org/10.1016/j.jmb.2010.04.062.
Raquet X, Lamotte-Brasseur J, Fonze E, Goussard S, Courvalin P, Frere JM. 1994. TEM β-lactamase mutants hydrolysing third-generation cephalosporins. A kinetic and molecular modelling analysis. J. Mol. Biol. 244: 625-639.
Ibuka AS, Ishii Y, Galleni M, Ishiguro M, Yamaguchi K, Frere JM, Matsuzawa H, Sakai H. 2003. Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochem. J. 42:10634-10643. http://dx.doi.org/10.1021/bi0342822.
Totir MA, Padayatti PS, Helfand MS, Carey MP, Bonomo RA, Carey PR, van den Akker F. 2006. Effect of the inhibitor-resistant M69V substitution on the structures and populations of trans-enamine β-lactamase intermediates. Biochem. 45:11895-11904. http://dx.doi.org/10.1021/bi060990m.
Belaaouaj A, Lapoumeroulie C, Canica MM, Vedel G, Nevot P, Krishnamoorthy R, Paul G. 1994. Nucleotide sequences of the genes coding for the TEM-like β-lactamases IRT-1 and IRT-2 (formerly called TRI-1 and TRI-2). FEMS Microbiol. Lett. 120:75-80.
Giakkoupi P, Tzelepi E, Legakis NJ, Tzouvelekis LS. 1998. Substitution of Arg-244 by Cys or Ser in SHV-1 and SHV-5 β-lactamases confers resistance to mechanism-based inhibitors and reduces catalytic efficiency of the enzymes. FEMS Microbiol. Lett. 160:49-54.
Power P, Mercuri P, Herman R, Kerff F, Gutkind G, Dive G, Galleni M, Charlier P, Sauvage E. 2012. Novel fragments of clavulanate observed in the structure of the class A β-lactamase from Bacillus licheniformis BS3. J. Antimicrob. Chemother. 67:2379-2387. http://dx.doi.org/10.1093/jac/dks231.
Ruggiero M, Sauvage E, Troncoso F, Curto L, Galleni M, Power P, Gutkind G. 2012. Mutations in R220 in PER-2 β-lactamase resulting in a decreased susceptibility to inhibitors also impact in the catalytic activity towards substrates, abstr C1-1206, p 134. Abstr. 52nd Intersci. Conf. Antimicrob. Agents Chemother. American Society for Microbiology, Washington, DC.