Breznak, J.A.; Brune, A. Role of microorganisms in the digestion of lignocellulose by termites. Annu. Rev. Entomol. 1994, 39, 453-487.
König, H.; Li, L.; Fröhlich, J. The cellulolytic system of the termite gut. Appl. Microbiol. Biotechnol. 2013, 97, 7943-7962.
Merino, S.T.; Cherry, J. Progress and challenges in enzyme development for biomass utilization. Adv. Biochem. Eng. Biotechnol. 2007, 108, 95-120.
Ni, J.; Tokuda, G. Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol. Adv. 2013, 31, 838-850.
Lucena, S.A.; Lima, L.S.; Cordeiro, L.S., Jr.; Sant'Anna, C.; Constantino, R.; Azambuja, P.; de Souza, W.; Garcia, E.S.; Genta, F.A. High throughput screening of hydrolytic enzymes from termites using a natural substrate derived from sugarcane bagasse. Biotechnol. Biofuels. 2011, 4, doi:10.1186/1754-6834-4-51.
Oppert, C.; Klingeman, W.E.; Willis, J.D.; Oppert, B.; Jurat-Fuentes, J.L. Prospecting for cellulolytic activity in insect digestive fluids. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 2010, 155, 145-154.
Tokuda, G.; Lo, N.; Watanabe, H. Marked variations in patterns of cellulase activity against crystalline- vs. carboxymethyl-cellulose in the digestive systems of diverse, wood-feeding termites. Physiol. Entomol. 2005, 30, 372-380.
Andric, P.; Meyer, A.S.; Jensen, P.A.; Dam-Johansen, K. Reactor design for minimizing product inhibition during enzymatic lignocellulosehydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition oncellulolytic enzymes. Biotechnol. Adv. 2010, 28, 308-324.
Xiao, Z.; Zhang, X.; Gregg, D.J.; Saddler, J.N. Effects of sugar inhibition on cellulases and β-glucosidase during enzymatic hydrolysis of softwood substrates. Appl. Biochem. Biotechnol. 2004, 113-116, 1115-1126.
Harjunpdd, V.; Helin, J.; Koivula, A.; Siika-aho, M.; Drakenberg, T. A comparative study of two retaining enzymes of Trichoderma reesei: Transglycosylation of oligosaccharides catalysed by the cellobiohydrolase I, Cel7A, and the β-mannanase, Man5A. FEBS Lett. 1999, 443, 149-153.
Nouaille, R.; Matulova, M.; Delort, A.M.; Forano, E. Oligosaccharides synthesis in Fibrobacter succinogenes S85 and its modulation by the substrate. FEBS J. 2005, 272, 2416-2427.
Suzuki, H.; Igarashi, K.; Samejima, M. Cellotriose and cellotetraose as inducers of the genes encoding cellobiohydrolases in the basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 2010, 76, 6164-6170.
Pokusaeva, K.; O'Connell-Motherway, M.; Zomer, A.; MacSharry, J.; Fitzgerald, G.F.; van Sinderen, D. Cellodextrin utilization by Bifidobacterium breve UCC2003. Appl. Environ. Microbiol. 2011, 77, 1681-1690.
Hu, J.; Arantes, V.; Saddler, J.N. The enhancement of enzymatic hydrolysis of lignocellulosic substrates by the addition of accessory enzymes such as xylanase: Is it an additive or synergistic effect? Biotechnol. Biofuels. 2011, 4, doi: 10.1186/1754-6834-4-36.
Qing, Q.; Yang, B.; Wyman, C.E. Xylooligomers are strong inhibitors of cellulose hydrolysis by enzymes. Bioresour. Technol. 2010, 101, 9624-9630.
Zhang, J.; Viikari, L. Xylo-oligosaccharides are competitive inhibitors of cellobiohydrolase I from Thermoascus aurantiacus. Bioresour. Technol. 2012, 117, 286-291.
Aachary, A.A.; Prapulla, S.G. Xylooligosaccharides (XOS) as an emerging prebiotic: microbial synthesis, utilization, structural characterization, bioactive properties, and applications. Compr. Rev. Food. Sci. Food Saf. 2011, 10, 2-16.
Qing, Q.; Li, H.; Kumar, R.; Wyman, C.E. Xylooligosaccharides Production, Quantification, and Characterization in Context of Lignocellulosic Biomass Pretreatment. In Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, 1st ed.; Wyman, C.E., Ed.; John Wiley & Sons, Ltd: Chichester, UK, 2013; doi:10.1002/9780470975831.ch19.
Andersson, M.; Wittgren, B.; Schagerlof, H.; Momcilovic, D.; Wahlund, K.G. Size and structure characterization of ethylhydroxyethyl cellulose by the combination of field-flow fractionation with other techniques. Investigation of ultra large components. Biomacromolecules 2004, 5, 97-105.
Enebro, J.; Momcilovic, D.; Siika-aho, M.; Karlsson, S. A new approach for studying correlations between the chemical structure and the rheological properties in carboxymethyl cellulose. Biomacromolecules 2007, 8, 3253-3257.
Momcilovic, D.; Wittgren, B.; Wahlund, K.G.; Karlsson, J.; Brinkmalm, G. Sample preparation effects in matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of partially depolymerised carboxymethyl cellulose. Rapid Commun. Mass Spectrom. 2003, 17, 1107-1115.
Cohen, A.; Schagerlof, H.; Nilsson, C.; Melander, C.; Tjerneld, F.; Gorton, L. Liquid chromatography-mass spectrometry analysis of enzyme-hydrolysed carboxymethylcellulose for investigation of enzyme selectivity and substituent pattern. J. Chromatogr. A 2004, 1029, 87-95.
Enebro, J.; Momcilovic, D.; Siika-aho, M.; Karlsson, S. Investigation of endoglucanase selectivity on carboxymethyl cellulose by mass spectrometric techniques. Cellulose 2009, 16, 271-280.
Karlsson, J.; Momcilovic, D.; Wittgren, B.; Schulein, M.; Tjerneld, F.; Brinkmalm, G. Enzymatic degradation of carboxymethyl cellulose hydrolyzed by the endoglucanases Cel5A, Cel7B, and Cel45A from Humicola insolens and Cel7B, Cel12A and Cel45Acore from Trichoderma reesei. Biopolymers 2002, 63, 32-40.
Enebro, J.; Karlsson, S. Improved matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry of carboxymethyl cellulose. Rapid Commun. Mass Spectrom. 2006, 20, 3693-3698.
Park, S.; Baker, J.O.; Himmel, M.E.; Parilla, P.A.; Johnson, D.K. Cellulose crystallinity index: Measurement techniques and their impact on interpreting cellulase performance. Biotechnol. Biofuels. 2010, 3, doi:10.1186/1754-6834-3-10.
Reese, E.T.; Smakula, E.; Perlin, A.S. Enzymatic production of cellotriose from cellulose. Arch. Biochem. Biophys. 1959, 85, 171-175.
Huebner, A.; Ladisch, M.R.; Tsao, G.T. Preparation of cellodextrins: An engineering approach. Biotechnol. Bioeng. 1978, 20, 1669-1677.
Damude, H.G.; Ferro, V.; Whiters, S.G.; Warren, R.A.J. Substrate specificity of endoglucanase A from Cellulomonas fimi: Fundamental differences between endoglucanases and exoglucanases from family 6. Biochem. J. 1996, 315, 467-472.
Gupta, R.; Lee, Y.Y. Mechanism of cellulase reaction on pure cellulosic substrates. Biotechnol. Bioeng. 2009, 102, 1570-1581.
Kolenova, K.; Vrsanska, M.; Biely, P. Mode of action of endo-beta-1,4-xylanases of families 10 and 11 on acidic xylooligosaccharides. J. Biotechnol. 2006, 121, 338-345.
Tenkanen, M.; Luonteri, E.; Teleman, A. Effect of side groups on the action of β-xylosidase from Trichoderma reesei against substituted xylo-oligosaccharides. FEBS Lett. 1996, 399, 303-306.
Jacobs, A.; Larsson, P.T.; Dahlman, O. Distribution of uronic acids in xylans from various species of soft- and hardwood as determined by MALDI mass spectrometry. Biomacromolecules 2001, 2, 979-990.
Teleman, A.; Tenkanen, M.; Jacobs, A.; Dahlman, O. Characterization of O-acetyl-(4-O-methylglucurono)xylan isolated from birch and beech. Carbohydr. Res. 2002, 337, 373-377.
Schäfer, A.; Konrad, R.; Kuhnigk, T.; Kämpfer, P.; Hertel, H.; König, H. Hemicellulose-degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 1996, 80, 471-478.
Bignell, D.E.; Andersson, J.M. Determination of pH and oxygen status in the guts of lower and higher termites. J. Insect. Physiol. 1980, 26, 183-188.
Mattéotti, C.; Bauwens, J.; Brasseur, C.; Tarayre, C.; Thonart, P.; Destain, J.; Francis, F.; Haubruge, E.; de Pauw, E.; Portetelle, D.; et al. Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein. Expr. Purify. 2012, 83, 117-127.
Tarayre, C.; Brognaux, A.; Brasseur, C.; Bauwens, J.; Millet, C.; Mattéotti, C.; Destain, J.; Vandenbol, M.; Portetelle, D.; de Pauw, E.; et al. Isolation and cultivation of a xylanolytic Bacillus subtilis extracted from the gut of the termite Reticulitermes santonensis. Appl. Biochem. Biotechnol. 2013, 171, 225-245.