Chromera velia, Endosymbioses and the Rhodoplex Hypothesis - Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles and Haptophytes (CASH Lineages)
Next generation sequencing; eukaryote-to-eukaryote endosymbioses; horizontal and endosymbiotic gene transfer; chromalveolate hypothesis; long-branch attraction artifacts
Abstract :
[en] The discovery of Chromera velia, a free-living photosynthetic relative of apicomplexan pathogens, has provided an unexpected opportunity to study the algal ancestry of malaria parasites. In this work we compared the molecular footprints of a eukaryote-to-eukaryote endosymbiosis in C. velia to their equivalents in peridinin-containing dinoflagellates (PCD) to re- evaluate recent claims in favor of a common ancestry of their plastids. To this end, we established the draft genome and a set of full-length cDNA sequences from C. velia via next- generation sequencing. We documented the presence of a single coxI gene in the mitochondrial genome, which thus represents the genetically most reduced aerobic organelle identified so far, but focused our analyses on five “lucky genes” of the Calvin cycle. These were selected because of their known support for a common origin of complex plastids from cryptophytes, alveolates (represented by PCDs), stramenopiles and haptophytes (CASH) via a single secondary endosymbiosis with a red alga. As expected, our broadly sampled phylogenies of the nuclear- encoded Calvin cycle markers support a rhodophycean origin for the complex plastid of Chromera. However, they also suggest an independent origin of apicomplexan and dinophycean (PCD) plastids via two eukaryote-to-eukaryote endosymbioses. Although at odds with the current view of a common photosynthetic ancestry for alveolates, this conclusion is nonetheless in line with the deviant plastome architecture in dinoflagellates and the morphological paradox of four versus three plastid membranes in the respective lineages. Further support for independent endosymbioses is provided by analysis of five additional markers, four of them involved in the plastid protein import machinery. Finally, we introduce the “rhodoplex hypothesis” as a convenient way to designate evolutionary scenarios where CASH plastids are ultimately the product of a single secondary endosymbiosis with a red alga, but were subsequently horizontally spread via higher-order eukaryote-to-eukaryote endosymbioses.
Petersen, Jörn; Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Ludewig, Ann-Kathrin; Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Michael, Victoria; Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Bunk, Boyke; Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Jarek, Michael; Helmholtz-Zentrum für Infektionsforschung GmbH
Baurain, Denis ; Université de Liège - ULiège > Département des sciences de la vie > Phylogénomique des eucaryotes
Brinkmann, Henner; Leibniz-Institut DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH
Language :
English
Title :
Chromera velia, Endosymbioses and the Rhodoplex Hypothesis - Plastid Evolution in Cryptophytes, Alveolates, Stramenopiles and Haptophytes (CASH Lineages)
Adl SM, et al. 2005. The new higher level classification of eukaryotes with emphasis on the taxonomy of protists. J Eukaryot Microbiol. 52: 399-451.
Adl SM, et al. 2012. The revised classification of eukaryotes. J Eukaryot Microbiol. 59: 429-493.
Agrawal S, van Dooren GG, Beatty WL, Striepen B. 2009. Genetic evidence that an endosymbiont-derived endoplasmic reticulum-associated protein degradation (ERAD) system functions in import of apicoplast proteins. J Biol Chem. 284: 33683-33691.
Allen AE, et al. 2012. Evolution and functional diversification of fructose bisphosphate aldolase genes in photosynthetic marine diatoms. Mol Biol Evol. 29: 367-379.
Archibald JM. 2009. The puzzle of plastid evolution. Curr Biol. 19: R81-R88.
Aronesty E. 2011. Command-line tools for processing biological sequencing data. [cited 2014Mar 14]. Available from: http://code.google.com/p/ea-utils.
Bachvaroff TR, Sanchez Puerta MV, Delwiche CF. 2005. Chlorophyll ccontaining plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Mol Biol Evol. 22: 1772-1782.
Bapteste E, et al. 2002. The analysis of 100 genes supports the grouping of three highly divergent amoebae: Dictyostelium, Entamoeba, and Mastigamoeba. Proc Natl Acad Sci U S A. 99: 1414-1419.
Baurain D, et al. 2010. Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol. 27: 1698-1709.
Bodył A. 2005. Do plastid-related characters support the chromalveolate hypothesis? J Phycol 41: 712-719.
Bodył A, Moszczyński K. 2006. Did the peridinin plastid evolve through tertiary endosymbioses? A hypothesis. Eur J Phycol. 41: 435-448.
Bodył A, Stiller JW, Mackiewicz P. 2009. Chromalveolate plastids: direct descent or multiple endosymbioses? Trends Ecol Evol. 24: 119-121.
Boetzer M, Henkel CV, Jansen HJ, Butler D, PirovanoW. 2011. Scaffolding pre-assembled contigs using SSPACE. Bioinformatics 27: 578-579.
Bolte K, et al. 2011. Making new out of old: recycling and modification of an ancient protein translocation system during eukaryotic evolution. Mechanistic comparison and phylogenetic analysis of ERAD, SELMA and the peroxisomal importomer. Bioessays 33: 368-376.
Brinkmann H, et al. 2005. An empirical assessment of long-branch attraction artefacts in deep eukaryotic phylogenomics. Syst Biol. 54: 743-757.
Burki F, Okamoto N, Pombert JF, Keeling PJ. 2012. The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins. Proc Biol Sci. 279: 2246-2254.
Burki F, Shalchian-Tabrizi K, Pawlowski J. 2008. Phylogenomics reveals a new 'megagroup' includingmost photosynthetic eukaryotes. Biol Lett. 4: 366-369.
Cavalier-Smith T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Eukaryot Microbiol. 46: 347-366.
Chesnick JM, Kooistra WH, Wellbrock U, Medlin LK. 1997. Ribosomal RNA analysis indicates a benthic pennate diatom ancestry for the endosymbionts of the dinoflagellates Peridinium foliaceum and Peridinium balticum (Pyrrhophyta). J Eukaryot Microbiol. 44: 314-320.
Clasquin MF, et al. 2011. Riboneogenesis in yeast. Cell 145: 969-980.
Clermont S, et al. 1993. Determinants of coenzyme specificity in glyceraldehyde- 3-phosphate dehydrogenase: role of the acidic residue in the fingerprint region of the nucleotide binding fold. Biochemistry 32: 10178-10184.
Delwiche CF. 1999. Tracing the thread of plastid diversity through the tapestry of life. Am Nat. 154:S164-S177.
Delwiche CF, Palmer JD. 1996. Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol. 13: 873-882.
Deschamps P, Moreira D. 2012. Reevaluating the green contribution to diatom genomes. Genome Biol Evol. 4: 683-688.
Dorrell RG, Drew J, Nisbet RE, Howe CJ. 2014. Evolution of chloroplast transcript processing in Plasmodium and its chromerid algal relatives. PLoS Genet. 10:e1004008.
Dorrell RG, Smith AG. 2011. Do red and green make brown?: perspectives on plastid acquisitions within chromalveolates. Eukaryot Cell. 10: 856-868.
Douglas S, et al. 2001. The highly reduced genome of an enslaved algal nucleus. Nature 410: 1091-1096.
Felsner G, et al. 2011. ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genome Biol Evol. 3: 140-150.
Fernández Robledo JA, et al. 2011. The search for the missing link: a relic plastid in Perkinsus? Int J Parasitol. 41: 1217-1229.
Frommolt R, et al. 2008. Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol. 25: 2653-2667.
Gabrielsen TM, et al. 2011. Genome evolution of a tertiary dinoflagellate plastid. PLoS One 6:e19132.
Gilson PR, et al. 2006. Complete nucleotide sequence of the chlorarachniophyte nucleomorph: nature's smallest nucleus. Proc Natl Acad Sci U S A. 103: 9566-9571.
Graham LE, Wilcox LW. 2000. Dinoflagellates. In: Graham LE, editor. Algae. Upper Saddle River (NJ): Prentice-Hall. p. 198-231.
Grauvogel C, Petersen J. 2007. Isoprenoid biosynthesis authenticates the classification of the green alga Mesostigma viride as an ancient streptophyte. Gene 396: 125-133.
Grauvogel C, Reece KS, Brinkmann H, Petersen J. 2007. Plastid isoprenoid metabolism in the oyster parasite Perkinsus marinus connects dinoflagellates and malaria pathogens - new impetus for studying alveolates. J Mol Evol. 65: 725-729.
Green BR. 2011. After the primary endosymbiosis: an update on the chromalveolate hypothesis and the origins of algae with Chl c. Photosynth Res. 107: 103-115.
Gruber A, et al. 2007. Protein targeting into complex diatom plastids: functional characterisation of a specific targeting motif. Plant Mol Biol. 64: 519-530.
Grzebyk D, Schofield O, Vetriani C, Falkowski PG. 2003. The mesozoic radiation of eukaryotic algae: the portable plastid hypothesis. J Phycol. 39: 259-267.
Hackett JD, Maranda L, Yoon HS, Bhattacharya D. 2003. Phylogenetic evidence for the cryptophyte origin of the plastid of Dinophysis (Dinophysiales, Dinophyceae). J Phycol. 39: 440-448.
Harper JT, Keeling PJ. 2003. Nucleus-encoded, plastid-targeted glyceraldehyde- 3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol Biol Evol. 20: 1730-1735.
Huang J, Gogarten JP. 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8:R99.
Huang J, et al. 2004. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol. 5:R88.
Janouskovec J, Horák A, OborníkM, Lukes J, Keeling PJ. 2010. A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A. 107: 10949-10954.
Jomaa H, et al. 1999. Inhibitors of the non-mevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285: 1573-1576.
Kilian O, Kroth PG. 2005. Identification and characterization of a new conserved motif within the presequence of proteins targeted into complex diatom plastids. Plant J. 41: 175-183.
Lane CE, Archibald JM. 2008. The eukaryotic tree of life: endosymbiosis takes its TOL. Trends Ecol Evol. 23: 268-275.
Lane CE, Archibald JM. 2009. Reply to Bodył, Stiller and Mackiewicz: "Chromalveolate plastids: direct descent or multiple endosymbioses?". Trends Ecol Evol. 24: 121-122.
Lane CE, et al. 2007. Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A. 104: 19908-19913.
Le SQ, Gascuel O. 2008. An improved general amino acid replacement matrix. Mol Biol Evol. 25: 1307-1320.
Liaud MF, Brandt U, Scherzinger M, Cerff R. 1997. Evolutionary origin of cryptomonad microalgae: two novel chloroplast/cytosol-specific GAPDH genes as potential markers of ancestral endosymbiont and host cell components. J Mol Evol. 44(Suppl 1):S28-S37. (Pubitemid 27098525)
Lin S. 2011. Genomic understanding of dinoflagellates. Res Microbiol. 162: 551-569.
Lizundia R, Werling D, Langsley G, Ralph SA. 2009. Theileria apicoplast as a target for chemotherapy. Antimicrob Agents Chemother. 53: 1213-1217.
Martin W, Mustafa AZ, Henze K, Schnarrenberger C. 1996. Higher-plant chloroplast and cytosolic fructose-1,6-bisphosphatase isoenzymes: origins via duplication rather than prokaryote-eukaryote divergence. Plant Mol Biol. 32: 485-491.
Martin W, Schnarrenberger C. 1997. The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet. 32: 1-18.
Matsumoto T, et al. 2011. Green-colored plastids in the dinoflagellate genus Lepidodinium are of core chlorophyte origin. Protist 162: 268-276.
Matsuzaki M, Kuroiwa H, Kuroiwa T, Kita K, Nozaki H. 2008. A cryptic algal group unveiled: a plastid biosynthesis pathway in the oyster parasite Perkinsus marinus. Mol Biol Evol. 25: 1167-1179.
Minge MA, et al. 2010. A phylogenetic mosaic plastid proteome and unusual plastid-targeting signals in the green-colored dinoflagellate Lepidodinium chlorophorum. BMC Evol Biol. 10: 191.
Moore RB, et al. 2008. A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451: 959-963.
Morse D, Salois P, Markovic P, Hastings JW. 1995. A nuclear-encoded form II RuBisCO in dinoflagellates. Science 268: 1622-1624.
Moustafa A, et al. 2009. Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324: 1724-1726.
Nassoury N, Cappadocia M, Morse D. 2003. Plastid ultrastructure defines the protein import pathway in dinoflagellates. J Cell Sci. 116: 2867-2874.
Nishitani G, et al. 2011. Multiple plastids collected by the dinoflagellate Dinophysis mitra through kleptoplastidy. Appl Environ Microbiol. 78: 813-821.
Oborník M, et al. 2012. Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163: 306-323.
Oborník M, Janouskovec J, Chrudimský T, Lukeš J. 2009. Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol. 39: 1-12.
Okamoto N, Inouye I. 2005. The katablepharids are a distant sister group of the Cryptophyta: a proposal for Katablepharidophyta divisio nova/Kathablepharida phylum novum based on SSU rDNA and beta-tubulin phylogeny. Protist 156: 163-179.
Patron NJ, Rogers MB, Keeling PJ. 2004. Gene replacement of fructose- 1,6-bisphosphate aldolase supports the hypothesis of a single photosynthetic ancestor of chromalveolates. Eukaryot Cell. 3: 1169-1175.
Petersen J, Teich R, Brinkmann H, Cerff R. 2006. A "green" phosphoribulokinase in complex algae with red plastids: evidence for a single secondary endosymbiosis leading to haptophytes, cryptophytes, heterokonts, and dinoflagellates. J Mol Evol. 62: 143-157.
Philippe H. 1993. MUST, a computer package of management utilities for sequences and trees. Nucleic Acids Res. 21: 5264-5272.
Ralph SA, et al. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat RevMicrobiol. 2: 203-216.
Rodríguez-Ezpeleta N, et al. 2005. Monophyly of primary photosynthetic eukaryotes: green plants, red algae, and glaucophytes. Curr Biol. 15: 1325-1330.
Rodríguez-Ezpeleta N, et al. 2007. Detecting and overcoming systematic errors in genome-scale phylogenies. Syst Biol. 56: 389-399.
Sanchez-Puerta MV, Delwiche CF. 2008. A hypothesis for plastid evolution in chromalveolates. J Phycol. 44: 1097-1107.
Shalchian-Tabrizi K, et al. 2006. Heterotachy processes in rhodophyte-derived secondhand plastid genes: implications for addressing the origin and evolution of dinoflagellate plastids. Mol Biol Evol. 23: 1504-1515.
Sommer MS, et al. 2007. Der1-mediated preprotein import into the periplastid compartment of chromalveolates? Mol Biol Evol. 24: 918-928.
Stamatakis A, Alachiotis N. 2010. Time and memory efficient likelihoodbased tree searches on phylogenomic alignments with missing data. Bioinformatics 26:i132-i139.
Stoebe B, Maier UG. 2002. One, two, three: nature's tool box for building plastids. Protoplasma 219: 123-130.
Stolz A, Hilt W, Buchberger A, Wolf DH. 2011. Cdc48: a power machine in protein degradation. Trends Biochem Sci. 36: 515-523.
Stork S, Lau J, Moog D, Maier UG. 2013. Three old and one new: protein import into red algal-derived plastids surrounded by four membranes. Protoplasma 250: 1013-1023.
Takishita K, Yamaguchi H, Maruyama T, Inagaki Y. 2009. A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3- phosphate dehydrogenase genes in "chromalveolate" members. PLoS One 4:e4737.
Talavera G, Castresana J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol. 56: 564-577.
Teich R, Zauner S, Baurain D, Brinkmann H, Petersen J. 2007. Origin and distribution of Calvin cycle fructose and sedoheptulose bisphosphatases in plantae and complex algae: a single secondary origin of complex red plastids and subsequent propagation via tertiary endosymbioses. Protist 158: 263-276.
Teles-Grilo ML, et al. 2007. Is there a plastid in Perkinsus atlanticus (Phylum Perkinsozoa)? Eur J Protistol. 43: 163-167.
Tengs T, et al. 2000. Phylogenetic analyses indicate that the 19'Hexanoyloxy-fucoxanthin-containing dinoflagellates have tertiary plastids of haptophyte origin. Mol Biol Evol. 17: 718-729.
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The CLUSTAL-X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25: 4876-4882.
van Dooren GG, Tomova C, Agrawal S, Humbel BM, Striepen B. 2008. Toxoplasma gondii Tic20 is essential for apicoplast protein import. Proc Natl Acad Sci U S A. 105: 13574-13579.
Wang Y, Morse D. 2006. Rampant polyuridylylation of plastid gene transcripts in the dinoflagellate Lingulodinium. Nucleic Acids Res. 34: 613-619.
Wilson RJ, et al. 1996. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol. 261: 155-172.
Woehle C, Dagan T, Martin WF, Gould SB. 2011. Red and problematic green phylogenetic signals among thousands of nuclear genes from the photosynthetic and apicomplexa-related Chromera velia. Genome Biol Evol. 3: 1220-1230.
Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res. 18: 821-829.
Zhang Z, Green BR, Cavalier-Smith T. 1999. Single gene circles in dinoflagellate chloroplast genomes. Nature 400: 155-159.
Zhang Z, Green BR, Cavalier-Smith T. 2000. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J Mol Evol. 51: 26-40.