[en] Background
Microbial cell population heterogeneity is now recognized as a major source of issues in the
development and optimization of bioprocesses. Even if single cell technologies are available
for the study of microbial population heterogeneity, only a few of these methods are available
in order to study the dynamics of segregation directly in bioreactors. In this context, specific
interfaces have been developed in order to connect a flow cytometer directly to a bioreactor
for automated analyses. In this work, we propose a simplified version of such an interface
and demonstrate its usefulness for multiplexed experiments.Results
A low-cost automated flow cytometer has been used in order to monitor the synthesis of a
destabilized Green Fluorescent Protein (GFP) under the regulation of the fis promoter and
propidium iodide (PI) uptake. The results obtained showed that the dynamics of GFP
synthesis are complex and can be attributed to a complex set of biological parameters, i.e. on
the one hand the release of protein into the extracellular medium and its uptake modifying the
activity of the fis promoter, and on the other hand the stability of the GFP molecule itself,
which can be attributed to the protease content and energy status of the cells. In this respect,
multiplexed experiments have shown a correlation between heat shock and ATP content and
the stability of the reporter molecule.
Conclusion
This work demonstrates that a simplified version of on-line FC can be used at the process
level or in a multiplexed version to investigate the dynamics of complex physiological
mechanisms. In this respect, the determination of new on-line parameters derived from
automated FC is of primary importance in order to fully integrate the power of FC in
dedicated feedback control loops.
Disciplines :
Biotechnology
Author, co-author :
Brognaux, Alison ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Han, Shanshan
Sorensen, Soren J
Lebeau, Frédéric ; Université de Liège - ULiège > Sciences et technologie de l'environnement > Mécanique et construction
Thonart, Philippe ; Université de Liège - ULiège > Département des sciences de la vie > Biochimie et microbiologie industrielles
Delvigne, Frank ; Université de Liège - ULiège > Chimie et bio-industries > Bio-industries
Language :
English
Title :
A low-cost, multiplexable, automated flow cytometry procedure for the characterization of microbial stress dynamics in bioreactors
Müller S, Harms H, Bley T. Origin and analysis of microbial population heterogeneity in bioprocesses. Curr Opin Biotechnol 2010, 21:100-113. 10.1016/j.copbio.2010.01.002, 20138500.
Rao CV, Wolf DM, Arkin AP. Control, exploitation and tolerance of intracellular noise. Nature 2002, 420:231-237. 10.1038/nature01258, 12432408.
Mettetal JT, Muzzey D, Pedraza JM, Ozbudak EM, van Oudenaarden A. Predicting stochastic gene expression dynamics in single cells. Proc Natl Acad Sci U S A 2006, 103:7304-7309. 10.1073/pnas.0509874103, 1464336, 16648266.
Thattai M, van Oudenaarden A. Stochastic gene expression in fluctuating environments. Genetics 2004, 167:523-530. 10.1534/genetics.167.1.523, 1470854, 15166174.
Patnaik PR. External, extrinsic and intrinsic noise in cellular systems : analogies and implications for protein synthesis. Biotechnol Mol Biol Rev 2006, 1:121-127.
Diaz M, Herrero M, Garcia LA, Quiros C. Application of flow cytometry to industrial microbial bioprocesses. Biochem Eng J 2010, 48:385-407.
Love KR, Politano TJ, Panagiotou V, Jiang B, Stadheim TA, Love JC. Systematic single-cell analysis of Pichia pastoris reveals secretory capacity limits productivity. PLoS One 2012, 7:e37915. 10.1371/journal.pone.0037915, 3369916, 22685548.
Zhao R, Natarajan A, Srienc F. A flow injection flow cytometry system for on-line monitoring of bioreactors. Biotechnol Bioeng 1999, 62:609-617. 10.1002/(SICI)1097-0290(19990305)62:5<609::AID-BIT13>3.0.CO;2-C, 10099570.
Abu-Absi NR, Zamamiri A, Kacmar J, Balogh SJ, Srienc F. Automated flow cytometry for acquisition of time-dependent population data. Cytometry A 2003, 51A:87-96.
Lin HY. Cellular responses to the induction of recombinant genes in Escherichia coli fed-batch cultures, in, Martin-Luther-Universität Halle-Wittenberg, Saale 2000, 130. Martin-Luther-Universität Halle-Wittenberg, Saale.
DeLisa MP, Li J, Rao G, Weigand WA, Bentley WE. Monitoring GFP operon fusion protein expression during high cell density cultivation of Escherichia coli using an on-line optical sensor. Biotechnol Bioeng 1999, 65:54-64. 10.1002/(SICI)1097-0290(19991005)65:1<54::AID-BIT7>3.0.CO;2-R, 10440671.
Kacmar J, Gilbert A, Cockrell J, Srienc F. The cytostat: A new way to study cell physiology in a precisely defined environment. J Biotechnol 2006, 126:163-172. 10.1016/j.jbiotec.2006.04.015, 16716427.
Golden JP, Verbarg J, Howell PB, Shriver-Lake LC, Ligler FS. Automated processing integrated with a microflow cytometer for pathogen detection in clinical matrices. Biosens Bioelectron 2013, 40:10-16. 10.1016/j.bios.2012.08.015, 22960010.
Van Nevel S, Koetzsch S, Weilenmann HU, Boon N, Hammes F. Routine bacterial analysis with automated flow cytometry. J Microbiol Methods 2013, 94:73-76. 10.1016/j.mimet.2013.05.007, 23684992.
Kuystermans D, Mohd A, Al-Rubeai M. Automated flow cytometry for monitoring CHO cell cultures. Methods 2012, 56:358-365. 10.1016/j.ymeth.2012.03.001, 22445707.
Hammes F, Broger T, Weilenmann HU, Vital M, Helbing J, Bosshart U, Huber P, Odermatt RP, Sonnleitner B. Development and laboratory-scale testing of a fully automated online flow cytometer for drinking water analysis. Cytometry A 2012, 81:508-516.
Han S, Delvigne F, Brognaux A, Gitte C, Sorensen JS. Design of growth-dependent biosensors based on destabilized GFP for the detection of physiological behavior of Escherichia coli in heterogeneous bioreactors. Biotechnol Prog 2013, 29:553-563. 10.1002/btpr.1694, 23335499.
Ball CA, Osuna R, Ferguson KC, Johnson RC. Dramatic change of fis level upon nutrient upshift in Escherichia coli. J Bacteriol 1992, 174:8043-8056. 207543, 1459953.
Enfors SO, Jahic M, Rozkov A, Xu B, Hecker M, Jürgen B, Krüger E, Schweder T, Hamer G, O'Beirne D, Noisommit-Rizzi N, Reuss M, Boone L, Hewitt C, McFarlane C, Nienow A, Kovacs T, Trägardh C, Fuchs L, Revstedt J, Friberg PC, Hjertager B, Blomsten G, Skogman H, Hjort S, Hoeks F, Lin HY, Neubauer P, van der Lans R, Luyben K, Vrabel P, Manelius A. Physiological responses to mixing in large scale bioreactors. J Biotechnol 2001, 85:175-185. 10.1016/S0168-1656(00)00365-5, 11165362.
Andersen JB, Sternberg C, Poulsen LK, Bjorn SP, Givskov M, Molin S. New Unstable Variants of Green Fluorescent Protein for Studies of Transient Gene Expression in Bacteria. Appl Environ Microbiol 1998, 64:2240-2246. 106306, 9603842.
Dennis PP, Ehrenberg M, Bremer H. Control of rRNA Synthesis in Escherichia coli: a Systems Biology Approach. Microbiol Mol Biol Rev 2004, 68:639-668. 10.1128/MMBR.68.4.639-668.2004, 539008, 15590778.
Delvigne F, Brognaux A, Francis F, Twizere JC, Gorret N, Sorensen SJ, Thonart P. Green Fluorescent Protein (GFP) leakage from microbial biosensors provides useful information for the estimation of the scale-down effect. Biotechnol J 2011, 6:968-978. 10.1002/biot.201000410, 21695786.
Brognaux A, Neubauer P, Twizere JC, Francis F, Gorret N, Thonart P, Delvigne F. Direct and indirect use of GFP whole cell biosensors for the assessment of bioprocess performances: Design of milliliter scale-down bioreactors. Biotechnol Prog 2012, 29:48-59.
Shokri A, Sanden AM, Larsson G. Growth rate dependent changes in Escherichia coli membrane structure and protein leakage. Appl Microbiol Biotechnol 2002, 58:386-392. 10.1007/s00253-001-0889-0, 11935192.
Bäcklund E, Reeks D, Marklanda K, Weir N, Bowering L, Larsson G. Fedbatch design for periplasmic product retention in Escherichia coli. J Biotechnol 2008, 135:358-365. 10.1016/j.jbiotec.2008.05.002, 18579250.
Bradley MD, Beach MB, de Koning AP J, Pratt TS, Osuna R. Effects of Fis on Escherichia coli gene expression during different growth stages. Microbiology 2007, 153:2922-2940. 10.1099/mic.0.2007/008565-0, 17768236.
Soini J, Falschlehner C, Mayer C, Böhm D, Weinel S, Panula J, Vasala A, Neubauer P. Transient increase of ATP as a response to temperature up-shift in Escherichia coli. Microb Cell Fact 2005, 4:9. 10.1186/1475-2859-4-9, 1087501, 15804347.
Egli T. How to live at very low substrate concentrations. Water Res 2011, 44:4826-4837.
Ferenci T. Adaptation to life at micromolar nutrient levels : the regulation of Escherichia coli glucose transport by endoinduction and cAMP. FEMS Microbiol Rev 1996, 18:301-317. 10.1111/j.1574-6976.1996.tb00246.x, 8703508.
Berney M, Hames F, Bosshard F, Weilenmann HU, Egli T. Assessment and interpretation of bacterial viability by using the LIVE/DEAD BacLigth kit in combination with flow cytometry. Appl Environ Microbiol 2007, 70:3283-3290.
Weuster-Botz D. Parallel reactor systems for bioprocess development. Adv Biochem Eng Biotechnol 2005, 92:125-143.
Betts JI, Baganz F. Miniature bioreactors : current practices and future opportunities. Microb Cell Fact 2006, 5:21. 10.1186/1475-2859-5-21, 1523360, 16725043.
Triccas JA, Pinto R, Britton WJ. Destabilized green fluorescent protein for monitoring transient changes in mycobacterial gene expression. Res Microbiol 2002, 153:379-383. 10.1016/S0923-2508(02)01327-X, 12234013.
Li XZX, Fang Y, Jiang X, Duong T, Fan C, Huang CC, Kain SR. Generation of destabilized green fluorescent protein as a transcription reporter. J Biol Chem 1998, 273:34970-34975. 10.1074/jbc.273.52.34970, 9857028.
Storz G, Hengge-Aronis E. Bacterial stress response 2000, Washington DC: American Society for Microbiology.
Hammes F, Berney M, Egli T. Cultivation-independent assessment of bacterial viability. Adv Biochem Eng Biotechnol 2011, 124:123-150.
Breeuwer PAT. Assessment of viability of microorganisms employing fluorescence techniques. Int J Food Microbiol 2000, 55:193-200. 10.1016/S0168-1605(00)00163-X, 10791743.
Davey HM. Prospects for the Automation of Analysis and Interpretation of Flow Cytometric Data. Cytometry A 2010, 77A:3-5.
LeMeur N. Computational methods for evaluation of cell-based data assessment-Bioconductor. Curr Opin Biotechnol 2013, 24:105-111. 10.1016/j.copbio.2012.09.003, 23062230.
Shi L, Günther S, Hübschmann T, Wick LY, Harms H, Müller S. Limits of propidium iodide as a cell viability indicator for environmental bacteria. Cytometry A 2007, 71:592-598.
Hewitt CJ, Nebe-Von Caron G, Axelsson B, Mc Farlane CM, Nienow AW. Studies related to the scale-up of high-cell-density E. coli fed-batch fermentations using multiparameter flow cytometry : effect of a changing microenvironment with respect to glucose and dissolved oxygen concentration. Biotechnol Bioeng 2000, 70:381-390. 10.1002/1097-0290(20001120)70:4<381::AID-BIT3>3.0.CO;2-0, 11005920.
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem 1951, 193:265-275.