[en] Three Brassicaceae species, Brassica napus (low glucosinolate content), Brassica nigra (including sinigrin), and Sinapis alba (including sinalbin) were used as host plants for two aphid species: the generalist Myzus persicae and the specialist Brevicoryne brassicae. Each combination of aphid species and prey host plant was used to Feed the polyphagous ladybird beetle, Adalia bipunctata. Experiments with Brassicaceae species including different amounts and kinds of glucosinolates (GLS) showed increased ladybird larval mortality at higher GLS concentrations. When reared on plants with higher GLS concentrations, the specialist aphid, B. brassicae, was found to be more toxic than M. persicae. Identification of GLS and related degradation products, mainly isothiocyanates (ITC), was investigated in the first two trophic levels, plant and aphid species, by high-performance liquid chromatography and gas chromatography-mass spectrometry, respectively. While only GLS were detected in M. persicae on each Brassicaceae species, high amounts of ITC were identified in B. brassicae samples (allyl-ITC and benzyl-ITC from B. nigra and S. alba, respectively) from all host plants. Biological effects of allelochemicals from plants on predators through aphid prey are discussed in relation to aphid species to emphasize the role of the crop plant in integrated pest management in terms of biological control efficacy.
BARTLET, R. J., and MIKOLAJCZAK, K. L. 1989. Toxicity of compounds derived from Limnanthes alba seed to fall armyworm (Lepidoptera: Noctuidae) and European corn borer (Lepidoptera: Pyralidae) larvae. J. Econ. Entomol. 82:1054-1060.
BIRCH, A. N. E., GRIFFITHS, D. W., and MACFARLANE SMITH, W. H. 1990. Changes in forage and oilseed rape (Brassica napus). Root glucosinolates in response to attack by turnip root fly (Delia floralis). J. Sci. Food Agric. 51:309-320.
BLAU, P. A., FEENY, P., CONTARDO, L., and ROBSON, D. S. 1978. Allyl-glucosinolate and herbivorous caterpillars: A contrast in toxicity and tolerance. Science 200:1296-1298.
CARTER, M. C., and DIXON, A. F. G. 1984. Honeydew: An arrestant stimulus for coccinellids. Ecol. Entomol. 9:383-387.
DAGNELIE, P. 1973. Théories et méthodes statistiques, tome 2, Presses agronomiques, Gembloux, Belgium.
DAWSON, G. W., DOUGHTY, K. J., HICK, A. J., PICKETT, J. A., PYE, B. J., SMART, L. E., and WADHAMS, L. J. 1993. Chemical precursors for studying the effects of glucosinolate catabolites on diseases and pests of oilseed rape (Brassica napus) or related plants. Pestic. Sci. 39:271-278.
DICKE, M., SABELIES, M. W., TAKABAYASHI, J., BRUIN, J., and POSTHUMUS, M. A. 1990. Plant strategies of manipulating predator-prey interactions through allelochemicals: Prospects for application in pest control. J. Chem. Ecol. 16:3091-3118.
ERICKSON, J. M., and FEENY, P. 1974. Sinigrin: A chemical barrier to the black swallowtail butterfly, Papilio polyxenes. Ecology 55:103-111.
FAO. 1995. Annuaire Commerce, Vol. 50. Statistics series no. 138.
FAO. 1997. Annuaire Production, Vol. 51. Statistics series no. 142.
FRAENKEL, G. S. 1959. The raison d'être of secondary plant substances. Science 129:1234-1237.
FRANCIS, F. 1999a. Conséquences évolutives des relations entre le puceron et son prédateur en présence de substances allélochimiques chez les Brassicaceae, 5ème Conférence Internationale sur les Ravageurs en Agriculture, Annales ANPP, Tome II, pp. 503-510.
FRANCIS, F. 1999b. Effects des glucosinolates sur les interactions du modèle plante-puceron-coccinelle. DEA dissertation. Gembloux Agricultural University, Gembloux.
FRANCIS, F., HAUBRUGE, E., and GASPAR, C. 1999. Effects of isothiocyanates on the glutathione S-transferases activity from Adalia bipunctata L. (Coleoptera: Coccinellidae). Med. Fac. Landbouw. Univ. Gent 64(3a):297-303.
GROB, K., and MATILE, P. 1979. Vacuolar location of glucosinolate in horseradish root cells. Plant Sci. Lett. 14:327-335.
HARBORNE, J. B. 1993. Introduction to Chemical Ecology, 4th ed. Academic Press, London.
HEANEY, R. K., and FENWICK, G. R. 1995. Natural toxins and protective factors in Brassica species, including rapeseed. Natural Toxins 3:233-237.
HICKS, K. L. 1974. Mustard oil glucosinolates: feeding stimulants for adult cabbage flea beetles, Phyllotreta cruciferae (Coleoptera: Chrysomelidae). Ann. Entomol. Soc. Am. 67:261-264.
HODEK, I. 1959. The influence of aphid species as food for the ladybirds Coccinella 7-punctata L. and Adalia bipunctata L. In The Ontogeny of Insects, Prague.
HODEK, I., and HONEK, A. 1996. Ecology of Coccinellidae, Kluwer Academic, The Netherlands.
HOPKINS, R. J., EKBOM, B., and HENKOW, L. 1998. Glucosinolate content and susceptibility for insect attack of three populations of Sinapis alba. J. Chem. Ecol. 24(7):1203-1216.
ISAACS, R., HARDIE, J., HICK, A. J., PYE, B. J., SMART, L. E., WADHAMS, L. J., and WOODOCK, C. M. 1993. Behavioural responses of Aphis fabae to isothiocyanates in the laboratory and field. Pestic. Sci. 39:349-355.
LAMB, R. J. 1989. Entomology of oilseed Brassica crops. Annu. Rev. Entomol. 34:211-229.
LEWIS, W. J., and MARTIN, W. R. 1990. Semiochemicals for use with parasitoids: Status and future. J. Chem. Ecol. 90:415-421.
MACGIBBON, D. B., and ALLISON, R. M. 1968. Glucosinolate system in the aphid Brevicoryne brassicae. N.Z. J. Sci. 11:444-446.
NAULT, L. R., and STAYER, W. E. 1972. Cited in J. A. Pickett, L. J. Wadhams, and Woodcock. 1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67-90.
PICKETT, J. A., WADHAMS, L. J., and WOODCOCK, C. M. 1992. The chemical ecology of aphids. Annu. Rev. Entomol. 37:67-90.
PROKOPY, R. J., and OWENS, E. D. 1983. Visual detection of plants by herbivorous insects. Annu. Rev. Entomol. 28:337-364.
QUAGLIA, F., ROSSI, E., PETACCHI, R., and TAYLOR, C. E. 1993. Observations on an infestation by green peach aphids (Homoptera: Aphididae) on greenhouse tomatoes in Italy. J. Econ. Entomol. 86(4):1019-1025.
REED, D. W, PIVNICK, K. A., and UNDERHILL, E. W. 1989. Identification of oviposition stimulants for the diamondback moth, Plutella xylostella, present in three species of Brassicaceae. Entomol. Exp. Appl. 53:277-286.
REED, H. C., TAN, S. H., HAAPANEN, K., KILLMON, M., REED, D. K., and ELLIOT, N. C. 1995. Olfactory responses of the parasitoid Diaeretiella rapae (Hymenoptera: Aphidiidae) to odor plants, aphids and plant-aphid complexes. J. Chem. Ecol. 21(4):407-415.
SAULS, C. E., NORDLUND, D. A., and LEWIS, W J. 1979. Kairomones and their use for management of entomophagous insects. VIII. Effect of diet on the kairomonal activity of frass from Heliothis zea (Boddie) larvae for Micropolitis croceipes (Cresson). J. Chem. Ecol. 5:363-369.
SCHOONHOVEN, L. M. 1981. Chemical mediators between plants and phytophagous insects, pp. 31-50, in D. A. Nordlund, R. L. Jones, and W. J. Lewis (eds.). Semiochemicals, Their Role in Pest Control, John Wiley & Sons, New York.
TRAYNIER, R. M. M., and TRUSCOTT, R. J. W. 1991. Potent natural egg-laying stimulant for cabbage butterfly Pieris rapae. J. Chem. Ecol. 17(7):1371-1379.
TURLINGS, T. C. J., TUMLINSON, J. H., ELLER, F. J., and LEWIS, W. J. 1990. Exploitation of herbivore induced plant odors by host seeking parasitic wasps. Science 250:1251-1253.
VET, L. E. M., and DICKE, M. 1992. Ecology of infochemical use by natural enemies in a tritrophic context. Annu. Rev. Entomol. 37:141-172.
WADLEIGH, R. W., and YU, S. J. 1988. Metabolism of an organothiocyanate allelochemical by glutathione transferase in three lepidopterous insects. J. Econ. Entomol. 81(3):776-780.
WEBER, G., OSWALD, S., and ZOLLNER, U. 1986. Suitability of rape cultivars with different glucosinolate content for Brevicoryne brassicae (L.) and Myzus persicae (Sultzer) (Hemiptera, Aphididae). J. Plant Dis. Prot. 93:113-124.
YU, S. J. 1984. Interactions of allelochemicals with detoxification enzymes of insect-susceptible and resistant armyworm. Pestic. Biochem. Physiol. 22:60-68.
YU, S. J., and HSU, E. L. 1993. Induction of detoxification enzymes in phytophagous insects: Roles of insecticide synergists, larval age and species. Arch Insect Biochem. Physiol. 24:21-32.