[en] Recent progress in computer science and stringent requirements of the design of “greener” buildings put forwards the research and applications of simulation-based optimization methods in the building sector. This paper provides an overview on this subject, aiming at clarifying recent advances and outlining potential challenges and obstacles in building design optimization. Key discussions are focused on handling discontinuous multi-modal building optimization problems, the performance and selection of optimization algorithms, multi-objective optimization, the application of surrogate models, optimization under uncertainty and the propagation of optimization techniques into real-world design challenges. This paper also gives bibliographic information on the issues of simulation programs, optimization tools, efficiency of optimization methods, and trends in optimization studies. The review indicates that future researches should be oriented towards improving the efficiency of search techniques and approximation methods (surrogate models) for large-scale building optimization problems; and reducing time and effort for such activities. Further effort is also required to quantify the robustness in optimal solutions so as to improve building performance stability.
Disciplines :
Architecture
Author, co-author :
Nguyen, Anh Tuan ; Université de Liège - ULiège > Form. doct. art bâtir & urba.
Reiter, Sigrid ; Université de Liège - ULiège > Département Argenco : Secteur A&U > Urbanisme et aménagement du territoire
Rigo, Philippe ; Université de Liège - ULiège > Département Argenco : Secteur A&U > Constructions hydrauliques et navales
Language :
English
Title :
A review on simulation-based optimization methods applied to building performance analysis
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Garber R. Optimisation stories: the impact of building information modelling on contemporary design practice. Archit Des 2009, 79(2):6-13.
Wetter M. GenOpt, generic optimization program - user manual, version 3.0.0. Technical report LBNL-5419. Lawrence Berkeley National Laboratory; 2009.
Wright JA. The optimised design of HVAC systems. PhD thesis. Loughborough University of Technology; 1986.
Baños R., Manzano-Agugliaro F., Montoya F.G., Gil C., Alcayde A., Gómez J. Optimization methods applied to renewable and sustainable energy: a review. Renew Sustain Energy Rev 2011, 15(4):1753-1766.
Wetter M., Wright J.A. A comparison of deterministic and probabilistic optimization algorithms for nonsmooth simulation-based optimization. Build Environ 2004, 39:989-999.
Wang L., Wong N.K., Li S. Facade design optimization for naturally ventilated residential buildings in Singapore. Energy Build 2007, 39(8):954-961.
Bambrook S.M., Sproul A.B., Jacob D. Design optimisation for a low energy home in Sydney. Energy Build 2011, 43(7):1702-1711.
Prianto E., Depecker P. Optimization of architectural design elements in tropical humid region with thermal comfort approach. Energy Build 2003, 35(3):273-280.
Goia F., Haase M., Perino M. Optimizing the configuration of a façade module for office buildings by means of integrated thermal and lighting simulations in a total energy perspective. Appl Energy 2013, 108:515-527.
Heiselberg P., Brohus H., Hesselholt A., Rasmussen H., Seinre E., Thomas S. Application of sensitivity analysis in design of sustainable buildings. Renew Energy 2009, 34:2030-2036.
Flager F., Welle B., Bansal P., Soremekun G., Haymaker J. Multidisciplinary process integration and design optimization of a classroom building. J Inform Technol Constr 2009, 14:595-612.
Ren H., Gao W., Ruan Y. Economic optimization and sensitivity analysis of photovoltaic system in residential buildings. Renew Energy 2009, 34(3):883-889.
Hasan A., Vuolle M., Sirén K. Minimisation of life cycle cost of a detached house using combined simulation and optimisation. Build Environ 2008, 43(12):2022-2034.
Roy R., Hinduja S., Teti R. Recent advances in engineering design optimisation: challenges and future trends. CIRP Ann - Manuf Technol 2008, 57(2):697-715.
Attia S. Computational optimization zero energy building design: interviews with 28 international experts. International energy agency (IEA) task 40: towards net zero energy buildings subtask B. Louvain la Neuve. Université Catholique de Louvain; 2012.
Wang W., Zmeureanu R., Rivard H. Applying multi-objective genetic algorithms in green building design optimization. Build Environ 2005, 40(11):1512-1525.
Wang W., Rivard H., Zmeureanu R. An object-oriented framework for simulation-based green building design optimization with genetic algorithms. Adv Eng Inform 2005, 19(1):5-23.
Fesanghary M., Asadi S., Geem Z.W. Design of low-emission and energy-efficient residential buildings using a multi-objective optimization algorithm. Build Environ 2012, 49:245-250.
Castro-Lacouture D., Sefair J.A., Flórez L., Medaglia A.L. Optimization model for the selection of materials using a LEED-based green building rating system in Colombia. Build Environ 2009, 44(6):1162-1170.
Evins R., Pointer P., Vaidyanathan R., Burgess S. A case study exploring regulated energy use in domestic buildings using design-of-experiments and multi-objective optimisation. Build Environ 2012, 54:126-136.
Lee J.H. Optimization of indoor climate conditioning with passive and active methods using GA and CFD. Build Environ 2007, 42(9):3333-3340.
Hamdy M., Hasan A., Siren K. Impact of adaptive thermal comfort criteria on building energy use and cooling equipment size using a multi-objective optimization scheme. Energy Build 2011, 43(9):2055-2067.
Eisenhower B., O'Neill Z., Narayanan S., Fonoberov V.A., Mezić I. A methodology for meta-model based optimization in building energy models. Energy Build 2012, 47:292-301.
Nguyen AT. Sustainable housing in Vietnam: climate responsive design strategies to optimize thermal comfort. PhD thesis. Université de Liège; 2013.
Kalogirou S.A. Optimization of solar systems using artificial neural-networks and genetic algorithms. Appl Energy 2004, 77(4):383-405.
Chen L, Fang QS, Zhang ZY. Research on the identification of temperature in intelligent building based on feed forward neural network and particle swarm optimization algorithm. In: Proceedings of 2010 sixth international conference on natural computation (ICNC). Yantai: Institute of Electrical and Electronics Engineers (IEEE); 2010. p. 1816-20.
Magnier L., Haghighat F. Multiobjective optimization of building design using TRNSYS simulations, genetic algorithm, and artificial neural network. Build Environ 2010, 45(3):739-746.
Tresidder E, Zhang Y, Forrester AIJ. Optimisation of low-energy building design using surrogate models. In: Proceedings of the 12th conference of international building performance simulation association. Sydney: IBPSA; 2011. p. 1012-6.
Boithias F., El Mankibi M., Michel P. Genetic algorithms based optimization of artificial neural network architecture for buildings' indoor discomfort and energy consumption prediction. Build Simul 2012, 5(2):95-106.
Tuhus-Dubrow D., Krarti M. Genetic-algorithm based approach to optimize building envelope design for residential buildings. Build Environ 2010, 45:1574-1581.
Pérez MV. Orientacion y sistemas ecologicos mediante senales locales. PhD thesis. Universidad Complutense de Madrid; 2011.
Wetter M., Polak E. A convergent optimization method using pattern search algorithms with adaptive precision simulation. Build Serv Eng Res Technol 2004, 25(4):327-338.
Wright JA, Alajmi A. The robustness of genetic algorithms in solving unconstrained building optimization problems. In: Proceedings of the 9th international building performance simulation association conference. Montreal: IBPSA; 2005. p. 1361-8.
Peippo K., Lund P.D., Vartiainen E. Multivariate optimization of design trade-offs for solar low energy buildings. Energy Build 1999, 29(2):189-205.
Sahab M.G., Toropov V.V., Gandomi A.H. A review on traditional and modern structural optimization: problems and techniques. Metaheuristic applications in structures and infrastructures 2013, 25-47. Elsevier, Oxford, [ISBN: 9780123983640]. A.H. Gandomi, X.S. Yang, S. Talatahari, A.H. Alavi (Eds.).
Hopfe C.J., Emmerich M.T., Marijt R., Hensen J. Robust multi-criteria design optimisation in building design. Proceedings of the 2012 building simulation and optimization conference 2012, 118-125. Loughborough University, Loughborough, Leicestershire, [ISBN: 978-1-897911-42-6]. J. Wright, M. Cook (Eds.).
Jin Q., Overend M. Facade renovation for a public building based on a whole-life value approach. Proceedings of the 2012 building simulation and optimization conference 2012, 378-385. Loughborough University, Loughborough, Leicestershire. J. Wright, M. Cook (Eds.).
Chantrelle F.P., Lahmidi H., Keilholz W., Mankibi M.E., Michel P. Development of a multicriteria tool for optimizing the renovation of buildings. Appl Energy 2011, 88(4):1386-1394.
Hamdy M., Palonen M., Hasan A. Implementation of pareto-archive NSGA-II algorithms to a nearly-zero-energy building optimisation problem. Proceedings of the 2012 building simulation and optimization conference 2012, 181-188. Loughborough University, Loughborough, Leicestershire, [ISBN: 978-1-897911-42-6]. J. Wright, M. Cook (Eds.).
Crawley D.B., Hand J.W., Kummert M., Griffith B.T. Contrasting the capabilities of building energy performance simulation programs. Build Environ 2008, 43(4):661-673.
The MathWorks. MATLAB program v. 2012b. Natick, MA: The MathWorks, Inc.; 2012.
Adams B.M., Bohnhoff W.J., Dalbey K.R., Eddy J.P., Eldred M.S., Gay D.M., et al. DAKOTA, a multilevel parallel object-oriented framework for design optimization, parameter estimation, uncertainty quantification, and sensitivity analysis: version 5.0 user's manual 2009, Sandia National Laboratory, Livermore, CA.
Palonen M. MOBO A new software for multi-objective building performance optimization; 2013. <> [accessed 25.03.13]. http://www.ibpsa-nordic.org/tools.php.
ESTECO SpA. modeFRONTIER 3 User Manual. Trieste: ESTECO SpA; 2003.
Suh WJ, Park CS, Kim DW. Heuristic vs. meta-heuristic optimization for energy performance of a post office building. In: Proceedings of the 12th conference of international building performance simulation association. Sydney: IBPSA; 2011. p. 704-11.
Wetter M, Wright JA. Comparison of a generalized pattern search and a genetic algorithm optimization method. In: Augenbroe G, Hensen J, editors. Proceedings of the 8th IBPSA conference, vol. 3. Eindhoven: IBPSA; 2003. p. 1401-8.
Kämpf J.H., Wetter M., Robinson D. A comparison of global optimisation algorithms with standard benchmark functions and real-world applications using EnergyPlus. J Build Perform Simul 2010, 3:103-120.
Salminen M., Palonen M., Sirén K. Combined energy simulation and multi-criteria optimisation of a LEED-certified building. Proceedings of the building simulation and optimization conference 2012, 372-377. Loughborough University, Loughborough, ISBN: 978-1-897911-42-6. J. Wright, M. Cook (Eds.).
Wetter M. Simulation-based building energy optimization. PhD Thesis. Berkeley: University of California; 2004.
Nielsen TR. Optimization of buildings with respect to energy and indoor environment. PhD thesis. Danmarks Techniske Universitet; 2002.
Hemker T., Fowler K.R., Farthing M.W., von Stryk O. A mixed-integer simulation-based optimization approach with surrogate functions in water resources management. Optimiz Eng 2008, 9:341-360.
Polak E. Optimization, algorithms and consistent approximations. Appl Math Sci 1997, 124:779.
Battiti R, Brunato M, Mascia, F. Reactive search and intelligent optimization. Technical report # DIT-07-049. Università Degli studi di Trento; 2007.
Nguyen AT, Reiter S. Passive designs and strategies for low-cost housing using simulation-based optimization and different thermal comfort criteria. J Build Perform Simul (ahead-of-print). 2013 doi: 10.1080/19401493.2013.770067.
Deb K. Multi-objective genetic algorithms: problem difficulties and construction of test problems. Evolut Comput 1999, 7(3):205-230.
Colorni A., Dorigo M., Maniezzo V. Genetic algorithms and highly constrained problems: the time-table case. Proceedings of the first international workshop on parallel problem solving from nature 1990, 55-59. Springer-Verlag, Dormund.
Elbeltagi E., Hegazy T., Grierson D. Comparison among five evolutionary-based optimization algorithms. Adv Eng Inform 2005, 19(1):43-53.
Palonen M, Hasan A, Siren K. A genetic algorithm for optimization of building envelope and HVAC system parameters. In: IBPSA, editor. Proceedings of the eleventh international IBPSA conference. Glasgow: University of Strathclyde; 2009. p. 159-66.
Kämpf J.H., Robinson D. A hybrid CMA-ES and HDE optimisation algorithm with application to solar energy potential. Appl Soft Comput 2009, 9(2):738-745.
Nguyen AT, Reiter S. Optimum design of low-cost housing in developing countries using nonsmooth simulation-based optimization. In: Proceedings of the 28th international PLEA conference. Lima, Peru: Pontificia Universidad Catolica del Peru; 2012.
Wolpert D.H., Macready W.G. No free lunch theorems for optimization. IEEE Trans Evol Comput 1997, 1(1):67-82.
Evins R. A review of computational optimisation methods applied to sustainable building design. Renew Sustain Energy Rev 2013, 22:230-245.
Hamdy M., Hasan A., Siren K. Applying a multi-objective optimization approach for design of low-emission cost-effective dwellings. Build Environ 2011, 46(1):109-123.
Wright J.A., Loosemore H.A., Farmani R. Optimization of building thermal design and control by multi-criterion genetic algorithm. Energy Build 2002, 34(9):959-972.
Wang J., Zhai Z.J., Jing Y., Zhang C. Particle swarm optimization for redundant building cooling heating and power system. Appl Energy 2010, 87(12):3668-3679.
Diakaki C., Grigoroudis E., Kabelis N., Kolokotsa D., Kalaitzakis K., Stavrakakis G. A multi-objective decision model for the improvement of energy efficiency in buildings. Energy 2010, 35(12):5483-5496.
Triantaphyllou E. Multi-criteria decision making: a comparative study. Dordrecht: Kluwer Academic Publishers (now Springer); 2000. p. 320. ISBN: 0-7923-6607-7.
Wright JA, Brownlee AE, Mourshed MM, Wang M. Multi-objective optimization of cellular fenestration by an evolutionary algorithm. J Build Perform Simul (ahead-of-print). 2013. doi: 10.1080/19401493.2012.762808.
Konak A., Coit D.W., Smith A.E. Multi-objective optimization using genetic algorithms: a tutorial. Reliab Eng Syst Safety 2006, 91(9):992-1007.
Schaffer J.D. Multiple objective optimization with vector evaluated genetic algorithms. Proceedings of the international conference on genetic algorithm and their applications 1985 1987, 93-100. Psychology Press, East Sussex. J.J. Grefenstette (Ed.).
Fonseca CM, Fleming PJ. Multi-objective genetic algorithms. In: IEE colloquium on 'genetic algorithms for control systems engineering' (Digest No. 1993/130). London: IEE; 1993.
Horn J., Nafpliotis N., Goldberg D.E. A niched Pareto genetic algorithm for multiobjective optimization. Proceedings of the first IEEE conference on evolutionary computation - IEEE world congress on computational intelligence 1994, 82-87. IEEE, Orlando, FL. J. Horn (Ed.).
Hajela P., Lin C.Y. Genetic search strategies in multicriterion optimal design. Struct Optimiz 1992, 4(2):99-107.
Srinivas N., Deb K. Multiobjective optimization using nondominated sorting in genetic algorithms. Evolut Comput 1994, 2(3):221-248.
Deb K., Pratap A., Agarwal S., Meyarivan T. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans Evolut Comput 2002, 6(2):182-197.
Sarker R., Liang K.H., Newton C. A new multiobjective evolutionary algorithm. Eur J Oper Res 2002, 140(1):12-23.
Yang R., Wang L.F., Wang Z. Multi-objective particle swarm optimization for decision-making in building automation. IEEE power and energy society general meeting 2011, 1-5. IEEE, San Diego, CA.
Yuan Y., Yuan J., Du H., Li L. An improved multi-objective ant colony algorithm for building life cycle energy consumption optimisation. Int J Comput Appl Technol 2012, 43(1):60-66.
Battiti R, Brunato M. LIONsolver 2.0 - reference guide and user manual. Trento: Reactive Search Srl; 2012.
Holst JN. Using whole building simulation models and optimizing procedures to optimize building envelope design with respect to energy consumption and indoor environment. In: Proceedings of the 8th international IBPSA conference. Eindhoven: IBPSA; 2003. p. 507-14.
Suga K., Kato S., Hiyama K. Structural analysis of Pareto-optimal solution sets for multi-objective optimization: an application to outer window design problems using multiple objective genetic algorithms. Build Environ 2010, 45(5):1144-1152.
Frontline Systems, Inc. Premium Solver platform for Mac: user Guide. Incline Village, NV: Frontline Systems, Inc.; 2011.
Ng KM. A continuation approach for solving nonlinear optimization problems with discrete variables. PhD thesis. Stanford University; 2002.
Nesterov Y. Presentation: complexity and simplicity of optimization. <> [accessed 10.01.13]. http://www.montefiore.ulg.ac.be.
Fleury C., Braibant V. Structural optimization: a new dual method using mixed variables. Int J Numer Meth Eng 1986, 23(3):409-428.
Goldberg D.E. Genetic algorithms in search, optimization, and machine learning 1989, Addison-Wesley, Reading, MA.
Joint Research Centre - European commission. Simlab 2.2 reference manual. Brussels: JRC; 2008.
Hopfe C.J., Hensen J. Uncertainty analysis in building performance simulation for design support. Energy Build 2011, 43:2798-2805.
Mara T.A., Tarantola S. Application of global sensitivity analysis of model output to building thermal simulations. Build Simul 2008, 1:290-302.
Tian W. A review of sensitivity analysis methods in building energy analysis. Renew Sustain Energy Rev 2013, 20:411-419.
Joint Research Centre - European commission. Simlab - Software package for uncertainty and sensitivity analysis. <> [accessed 10.12.12]. http://simlab.jrc.ec.europa.eu.
Khan M.A.I., Noakes C.J., Toropov V.V. Multi-objective optimization of the ventilation system design in a two-bed ward with an emphasis on infection control. Proceedings of the 2012 building simulation and optimization conference 2012, 9-18. Loughborough University, Loughborough, Leicestershire, ISBN: 978-1-897911-42-6. J. Wright, M. Cook (Eds.).
Panão M.J.N.O., Gonçalves H.J.P., Ferrão P.M.C. Optimization of the urban building efficiency potential for mid-latitude climates using a genetic algorithm approach. Renew Energy 2008, 33(5):887-896.
Fleury C. CONLIN: an efficient dual optimizer based on convex approximation concepts. Struct Optimiz 1989, 1(2):81-89.
Beckers M. Dual methods for discrete structural optimization problems. Int J Numer Meth Eng 2000, 48(12):1761-1784.
Klemm K., Marks W., Klemm A.J. Multicriteria optimisation of the building arrangement with application of numerical simulation. Build Environ 2000, 35(6):537-544.
Tresidder E., Zhang Y., Forrester A.I.J. Acceleration of building design optimisation through the use of Kriging surrogate models. Proceedings of building simulation and optimization 2012 2012, 1-8. Loughborough University, Loughborough, Leicestershire, ISBN: 978-1-897911-42-6. J. Wright, M. Cook (Eds.).
Gengembre E., Ladevie B., Fudym O., Thuillier A. A Kriging constrained efficient global optimization approach applied to low-energy building design problems. Inverse Probl Sci Eng 2012, 20(7):1101-1114.
Yao W., Chen X., Luo W., van Tooren M., Guo J. Review of uncertainty-based multidisciplinary design optimization methods for aerospace vehicles. Prog Aerosp Sci 2011, 47(6):450-479.
Huang H., Ooka R., Chen H., Kato S. Optimum design for smoke-control system in buildings considering robustness using CFD and genetic algorithms. Build Environ 2009, 44(11):2218-2227.
Rezvan A.T., Gharneh N.S., Gharehpetian G.B. Robust optimization of distributed generation investment in buildings. Energy 2012, 48:455-463.
Dantzig G.B. Linear programming under uncertainty. Manage Sci 1955, 1(3-4):197-206.
Beyer H.G., Sendhoff B. Robust optimization - a comprehensive survey. Comput Methods Appl Mech Eng 2007, 196(33):3190-3218.
Kruisselbrink J.W., Emmerich M.T., Deutz A.H., Bäck T. A robust optimization approach using Kriging metamodels for robustness approximation in the CMA-ES. 2010 IEEE congress on evolutionary computation 2010, 1-8. IEEE Press, Barcelona.
Frangopol D.M., Maute K. Life-cycle reliability-based optimization of civil and aerospace structures. Comput Struct 2003, 81(7):397-410.
Zang TA, Hemsch MJ, Hilburger MW, Kenny SP, Luckring JM, Maghami P, et al. Needs and opportunities for uncertainty-based multidisciplinary design methods for aerospace vehicles. Langley Research Center: National Aeronautics and Space Administration; 2002.
Zhou G, Ihm P, Krarti M, Liu S, Henze GP. Integration of a internal optimization module within EnergyPlus. In: Proceedings of the eighth international IBPSA conference. Eindhoven: IBPSA; 2003. p. 1475-82.
Monjour M.M., Kelliher D., Keane M. ArDOT: a tool to optimize environmental design of buildings. Proceedings of the 8th international IBPSA conference 2003, 919-926. IBPSA, Eindhoven. G. Augenbroe, J. Hensen (Eds.).
Attia S., Gratia E., De Herde A., Hensen J. Simulation-based decision support tool for early stages of zero-energy building design. Energy Build 2012, 49:2-15.
Christensen C, Anderson R, Horowitz S, Courtney A, Spencer J. BEopt software for building energy optimization: features and capabilities. Technical report NREL/TP-550-39929. Boulder: National Renewable Energy Laboratory/University of Colorado; 2006.
NREL (National Renewable Energy Laboratory). Opt-E-Plus Software for commercial building optimization (Fact Sheet). Golden, Colo.: NREL; 2010.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.