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ABSTRACT 

Recent progress in computer science and stringent requirements of the design of “greener” 

buildings put forwards the research and applications of simulation-based optimization 

methods in the building sector. This paper provides an overview on this subject, aiming at 

clarifying recent advances and outlining potential challenges and obstacles in building 

design optimization. Key discussions are focused on handling discontinuous multi-modal 

building optimization problems, the performance and selection of optimization algorithms, 

multi-objective optimization, the application of surrogate models, optimization under 

uncertainty and the propagation of optimization techniques into real-world design 

challenges. This paper also gives bibliographic information on the issues of simulation 

programs, optimization tools, efficiency of optimization methods, and trends in optimization 

studies. The review indicates that future researches should be oriented towards improving 

the efficiency of search techniques and approximation methods (surrogate models) for large-

scale building optimization problems; and reducing time and effort for such activities. 

Further effort is also required to quantify the robustness in optimal solutions so as to 

improve building performance stability.        

Keywords: building design optimization; surrogate-based optimization; optimization 

algorithm; robust design optimization; multi-objective optimization  
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ANN Artificial neural network GPS Generalized pattern search 

BOP Building optimization problem HS-BFGS Harmony search / Broyden-Fanno-

Fletcher-Goldfarb-Shanno algorithm 

BPS Building performance simulation HJ Hooke-Jeeves algorithm 

CFD Computational fluid dynamics NSGA Non-dominated Sorting genetic 

algorithm 

CMA Covariance matrix adaptation NSGA-II Fast non-Dominated Sorting genetic 

algorithm 

ES/HDE Evolution strategy and hybrid differential 

evolution 

PSO Particle swarm optimization 

GA Genetic algorithm RDO Robust design optimization 

1 Introduction 

In some recent decades, applications of computer simulation for handling complex 

engineering systems have emerged as a promising method. In building science, designers 

often use dynamic thermal simulation programs to analyze thermal and energy behaviors of 

a building and to achieve specific targets, e.g. reducing energy consumption, environmental 

impacts or improving indoor thermal environment [1]. An approach known as ‘parametric 

simulation method’ can be used to improve building performance. According to this 

method, the input of each variable is varied to see the effect on the design objectives while 

all other variables are kept unchanged. This procedure can be repeated iteratively with other 

variables. This method is often time-consuming while it only results in partial improvement 

because of complex and non-linear interactions of input variables on simulated results. To 

achieve an optimal solution to a problem (or a solution near the optimum) with less time and 

labor, the computer building model is usually “solved” by iterative methods, which 

construct infinite sequences, of progressively better approximations to a “solution”, i.e., a 

point in the search-space that satisfies an optimality condition [2]. Due to the iterative nature 

of the procedures, these methods are usually automated by computer programming. Such 

methods are often known as ‘numerical optimization’ or ‘simulation-based optimization’.     

 

The applications of numerical optimization have been considered since the year 80s 

and 90s based on great advances of computational science and mathematical optimization 

methods. However, most studies in building engineering which combined a building energy 

simulation program with an algorithmic optimization ‘engine’ have been published in the 

late 2000s although the first efforts were found much earlier. A pioneer study to optimize 

building engineering systems was presented by Wright in 1986 when he applied the direct 

search method in optimizing HVAC systems [3]. Figure 1 presents the increased trend of 

international optimization studies (indexed by SciVerse Scopus of Elsevier) in the field of 
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Figure 1: The increased trend of number of optimization studies in building science 
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building science within the last two decades. It can be seen that the number of optimization 

papers has increased sharply since the year 2005. This has shown a great interest on 

optimization techniques among building research communities.  

After nearly three decades of development, it is necessary to make a review on the 

state of art of building performance analysis using simulation-based optimization methods. 

In the present paper, obstacles and potential trends of this research domain will also be 

discussed.   

The term ‘optimization’ is often referred to the procedure (or procedures) of making 

something (as a design, system, or decision) as fully perfect, functional, or effective as 

possible
1
. In mathematics, statistics and many other sciences, mathematical optimization is 

the process of finding the best solution to a problem from a set of available alternatives.  

In building performance simulation (BPS), the term ‘optimization’ does not 

necessarily mean finding the globally optimal solution(s) to a problem since it may be 

unfeasible due to the natures of the problem [4] or the simulation program itself [5]. 

Furthermore, some authors have used the term ‘optimization’ to indicate an iterative 

improvement process using computer simulation to achieve sub-optimal solutions [6; 7; 8; 

9]. Some other authors used sensitivity analysis or the “design of experiment” method as an 

approach to optimize building performance without performing a mathematical optimization 

[10; 11; 12]. Other methods for building optimization have also been mentioned, e.g. brute-

force search [13], expert-based optimization [14]. However, it is generally accepted among 

the simulation-based optimization community that this term indicates an automated process 

which is entirely based on numerical simulation and mathematical optimization [15]. In a 

conventional building optimization study, this process is usually automated by the coupling 

between a building simulation program and an optimization ‘engine’ which may consists of 

one or several optimization algorithms or strategies [15]. The most typical strategy of the 

simulation-based optimization is summarized and presented in Figure 2.  

 

Today, simulation-based optimization has become an efficient measure to satisfy 

several stringent requirements of high performance buildings (e.g. low- energy buildings, 

passive houses, green buildings, net zero-energy buildings, zero-carbon buildings…). 

Design of high performance buildings using optimization techniques was studied by Wang 

et al. [16; 17], Fesanghary et al. [18], Bambrook et al. [7], Castro-Lacouture et al. [19] and 

many other researchers. Very high bonus points for energy saving in green building rating 

                                                 
1
 Available at: www.thefreedictionary.com [Accessed 11/4/2013] 

Figure 2: The coupling loop applied to simulation-based optimization in building 

performance studies 
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systems (e.g., up to 10 bonus points in LEED
2
) will continue to encourage the application of 

optimization techniques in building research and design practice.  

2 Major phases in a simulation-based optimization study 

Due to the variety of methods applied to BOPs, an optimization process can be 

subdivided into smaller steps and phases in different ways. Evins et al. [20] conducted their 

optimization through 4 steps: variable screening, initial optimization, detailed optimization 

and deriving results (innovative design rules). Other optimization schemes with more than 

one step were used in [21; 22]. This paper globally subdivides a generic optimization 

process into 3 phases, including a preprocessing phase, an optimization phase and a post 

processing phase. Table 1 listed these three optimization phases and potential tasks at each 

phase.  

Phase Major tasks 

Preprocessing Formulation of the optimization problem:  

- Computer building model;  

- Setting objective functions and constraints;  

- Selecting and setting independent (design) variables and constraints; 

- Selecting an appropriate optimization algorithm and its settings for the problem in hand; 

- Coupling the optimization algorithm and the building simulation program. 

(Optional) Screening out unimportant variables by using sensitivity analysis so as to reduce 

the search space and increase efficiency of the optimization, e.g. [20; 23; 24] 

(Optional) Creating a surrogate model (a simplified model of the simulation model) to 

reduce computational cost of the optimization, e.g. [25; 26; 27; 28; 29; 23] 

Running 

optimization 

Monitoring convergence  

Controlling termination criteria 

Detecting errors or simulation failures  

Post-processing Interpreting optimization results 

(Optional) Verification [13] and comparing optimization results of surrogate models and 

‘real’ models for reliability [23] 

(Optional) Performing sensitivity analysis on the results [30]  

Presenting the results 

* Preprocessing phase 

The preprocessing phase plays a significant role in the success of the optimization. 

In this phase, the most important task is the formulation of the optimization problem. Lying 

between the frontiers of building science and mathematics, this task is not trivial and 

requires rich knowledge of mathematical optimization, natures of simulation programs, 

ranges of design variables and interactions among variables, measure of building 

performance (objective functions), etc. This technique will be discussed in detail in the 

subsequent sections. It is valuable to note that the building model to be optimized should be 

simplified, but not to be too simple to prevent the risk of over-simplification and/or 

inaccurate modeling of building phenomena [27]. Conversely, too complicated models 

(many thermal zones and systems) may severely delay the optimization process.   

* Optimization phase 

In the optimization phase, the most important task of analysts is to monitor 

convergence of the optimization and to detect errors which may occur during the whole 

process. In optimization, the “convergence” term is usually used to indicate that the final 

                                                 
2
 Green building rating system of the U.S. 

Table 1: Major phases in simulation-based optimization studies of buildings
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solution is reached by the algorithm. It is necessary to note that a convergent optimization 

process does not necessarily mean the global minimum (or minima) has been found.  

Convergence behaviors of different optimization algorithms are not trivial and are a 

crucial research area of computational mathematics. With most heuristic algorithms, it is not 

easy to estimate the theoretical speed of convergence (p.25 in [31]). Many optimization 

studies in building research do not mention the convergence speed and likely assume that 

convergence of the optimization run had been achieved. In a scarce effort, Wetter and Polak 

[32] proposed a “Model adaptive precision generalized pattern search (GPS) algorithm” 

with adaptive precision cost function evaluations to speed convergence in optimization. 

They stated that in average their method could gain the same performance and reduce the 

CPU time by 65% compared with original GPS Hooke-Jeeves (HJ) algorithm. Wright and 

Ajlami [33] performed sensitivity analysis of the robustness of different settings of a genetic 

algorithm (GA) with 3 difference population sizes (5, 15 and 30 individuals). They 

concluded that there were some evidences that the population size of 5 individuals had a 

higher convergence velocity than the two larger populations and achieved lower cost 

functions. In [2], Wetter introduced some mathematical rules to define convergence of some 

algorithms implemented in GenOpt, but these are not simple enough to be applied by 

building scientists.  

Errors during the optimization process may rise from insolvable solution spaces, 

infeasible combination of variables (for instance, windows area that extend the boundary of 

a surface), output reading errors (as in coupling of GenOpt 2.0 and EnergyPlus)... A single 

simulation failure may crash the entire optimization process. To minimize such errors, some 

authors proposed to run parametric simulation to make sure that there is no failed simulation 

runs before running the optimization. Some others neglect the failed iterations and examine 

them later or set a large penalty term on the objective function for the failed solution. Errors 

can be detected by monitoring the optimization progress, considering simulation time report 

(too short or too long time means errors) [15]. Optimization failures caused by simulation 

errors can be avoided by using evolutionary algorithms as a failed solution among a 

population does not impede the process. By simply rejecting the solutions having a failed 

simulation run, evolutionary algorithms can be surprisingly robust to high failure rates 

(p.117 in [15]). 

There are a great number of termination criteria which are mostly dependent on the 

corresponding optimization algorithms. The followings are among the most frequently-used 

criteria in BPS: 

- Maximum number of generations, iterations, step size reductions,  

- Maximum optimization time, 

- Acceptable objective function (the objective function is equal to or smaller than 

a user-specified threshold), 

- Objective function convergence (changes of objective functions are smaller than 

a user-specified threshold),  

- Maximum number of equal cost function evaluations, 

- Population convergence (or independent variables convergence – e.g. the 

maximum change of variables is smaller than 0.5% [34]), 

- Gene convergence (in GAs). 

An optimization may have more than one termination criterion and the optimization 

process ends if at least one of these criteria is satisfied. The termination criteria must be set 

correctly unless the optimization will: (i) fail to converge to a stationary solution (too loose 

criteria) or (ii) result in useless evaluations, thereby extra optimization time (too tight 

criteria).  

Some optimization studies divide the optimization phase into 2 steps: an initial (or 

simple) optimization and a detailed optimization so as to investigate various design 
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situations [22] or various model responses [5]. In building performance optimization, it is 

often impossible to identify whether a global optimum is reached by the optimization. 

Nevertheless, even if the optimization results in a non-optimal solution, one may have 

obtained a better building performance compared to not running any optimization (readers 

are asked to refer to some references [2 p. 13; 15 p. 116] for further details). 

* Post processing phase 

In this phase, the analysts have to interpret optimization data into charts, diagrams or 

tables from which useful information of optimal solutions can be derived. The scatter plot is 

the among mostly-used types [15] while convergence diagrams, tables, solution probability 

plot, fitness and average fitness plot, parallel coordinate plot, bar charts… are sometimes 

used.  

It is always useful to verify whether the solutions found by the optimization are 

highly reliable or robust. In the literature, there is no standard rule for such a task. Hasan at 

al. [13] used the brute-force search (exhaustive search) method to test whether the optimum 

found by GenOpt is really the optimum. They came to a conclusion that GenOpt solutions 

are optimal solutions and are very close to the global optimum because they were also found 

from the optimal set of the brute-force candidate solutions. Eisenhower at al. [23] compared 

optimization results of the surrogate models and ‘original’ EnergyPlus models for 

reliability. The concluded that the optimization  using  the surrogate models offers nearly 

equivalent results to those obtained by performing optimization with EnergyPlus in the loop 

(in terms of numerical quality). Tuhus-Dubrow and Krarti [30] performed simple sensitivity 

analysis on optimization results by varying simulation weather files, utility rates and 

operating strategies to see the change in optimization outputs and associated input variables. 

They observed some changes in both design variables of optimal solutions and optimal 

values of the objective function. 

Wright and Ajlami [33] conducted a study on the robustness and sensitivity of the 

optimal solutions found by a simple GA. They found that the majority of the solutions have 

the objective function values within 2.5% of the best solution, the mean difference being 

1.4%. They also stated that many different optimal solutions have the same objective 

function values, indicating that the objective function was highly multi-modal and/or not 

sensitive.  

3 Classification of building optimization problems and optimization 

algorithms 

The classification of both optimization problems and optimization algorithms is an 

important basis for developing new optimization strategies and selecting a proper algorithm 

for a specific problem as well. Table 2 presents a generic classification of optimization 

problems. Some other categories observed elsewhere (e.g. fuzzy optimization), do not occur 

in building performance optimization, thus were not mentioned in this work. Table 2 shows 

several aspects that need to be considered during the optimization.  

Classification 

schemes based on 

Categories or classes 

Number of design 

variables 

Optimization problems can be classified as one-dimensional or multi-dimensional 

optimization, depending on the number of design variables considered in the study. 

Natures of design 

variables 

Design variables can be independent or mutually dependent. 

Optimization problems can be stated as “static” / “dynamic” if design variables are 

Table 2: Classification of optimization problems – adopted and modified from [35; 14]
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 independent / are functions of other parameters, e.g. time. 

Optimization problem can be seen as the deterministic optimization if design variables are 

subject to small uncertainty or have no uncertainty. In contrary, optimization design 

variables subject to uncertainty (e.g. building operation, occupant behavior, climate 

change) define the probabilistic-based design optimization as exemplified in the robust 

design optimization of Hopfe et al. [36]. 

Types of design 

variables 

Design variables can be continuous (accept any real value in a range), discrete (accept only 

integer values or discrete values) or both. The latter is referred to as mixed-integer 

programming. 

Number of 

objective functions 

Optimization problems can be classified as single-objective or multi-objective optimization 

depending on the number of objective functions. In practice, building optimization studies 

often use up to 2 objective functions, but exceptions do exist as exemplified by 3-objective 

function optimization in [37; 38].  

Natures of 

objective the 

function 

Different optimization techniques can be established depending on whether the objective 

function is linear or nonlinear, convex or non-convex, uni-modal or multi-modal, 

differentiable or non-differentiable, continuous or discontinuous, and computationally 

expensive or in-expensive.  

These result in linear and nonlinear programming, convex and non-convex optimization, 

derivative-based and derivative-free optimization methods, heuristic and meta-heuristic 

optimization methods, simulation-based and surrogate-based optimization. 

Presence of 

constraints and 

constraint natures 

Optimization can be classified as constrained or unconstrained problems based on the 

presence of constraints which define the set of feasible solutions within a larger search-

space. Dealing with an unconstrained problem is likely to be much easier than a 

constrained problem, but most of BOPs are constrained. 

Two major types of constraints are equality or inequality. A constraints function may have 

similar attributes to those of objective functions, and can be separable or inseparable. 

Problem domains Multi-disciplinary optimization relates to different physics in the optimization as 

exemplified in [39]. Such a problem requires much effort and makes the optimization more 

complex than single-domain optimization. 

 

To deal with numerous types of optimization problems, a large number of 

optimization methods have been developed. Optimization algorithms can be generally 

classified as local or global methods, heuristic or meta-heuristic methods, deterministic or 

stochastic methods, derivative-based or derivative-free methods, trajectory or population-

based methods, bio-inspired or non bio-inspired methods, single-objective or multi-

objective algorithms... This paper presents a classification system of only mostly-used 

optimization algorithms in building research based on how the optimization operator works 

(see Table 3).  

Family Strength and  weakness Typical algorithms 

Direct search 

family (including 

generalized 

pattern search 

(GPS) methods) 

- Derivative-free methods,  

- Can be used even if the cost function have small 

discontinuities 

- Some algorithms cannot give exact minimum 

point 

- May be attracted by a local minimum 

- Coordinate search methods often have problems 

with non-smooth functions  

Exhaustive search, Hooke-Jeeves 

algorithms, Coordinate search 

algorithm, Mesh adaptive search 

algorithm, Generating set search 

algorithm, Simplex algorithms 

Integer 

programming 

family 

Solving problems which consist of integer or 

mixed-integer variables 

Branch and Bound methods, Exact 

algorithm, Simulated annealing, 

Tabu search, Hill climbing method, 

CONLIN method 

Table 3: Classification of mostly-used algorithms applied to building performance 

optimization 
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Gradient-based 

family 

- Fast convergence; a stationary point can be 

guaranteed 

- Sensitive to discontinuities in the cost function  

- Sensitive to multi-modal function 

Bounded BFGS, Levenberg-

Marquardt algorithm, Discrete 

Armijo Gradient algorithm, 

CONLIN method… 

M
et

a-
h

eu
ri

st
ic

 m
et

h
o

d
 

Stochastic 

population-

based family 

- Need few or no assumptions about the objective 

function and can search very large search-spaces 

- Not to “get stuck” in local optima 

- Large number of cost function evaluations  

- Global minimum cannot be guaranteed  

+ Evolutionary optimization family: 

GA, Genetic programming, 

Evolutionary programming, 

Differential evolution, Cultural 

algorithm 

+ Swarm intelligence: Particle 

swarm optimization (PSO), Ant 

colony algorithm, Bee colony 

algorithm, Intelligent water drop 

Trajectory 

search 

family 

- Easy implementation even for complex problems  

- Appropriate for discrete optimization problems 

(continuous variables can also be used), e.g. 

traveling salesman problems 

- Only effective in discrete search spaces  

- Unable to tell whether the obtained solution is 

optimal or not 

- Problems of repeated annealing 

Simulated annealing, Tabu search, 

Hill climbing method 

Other  Harmony search algorithm, Firefly 

algorithm, Invasive weed 

optimization algorithm 

Hybrid family Combining the strength and limiting the weakness 

of the above-mentioned approaches 

PSO-HJ, GA-GPS, CMA-ES/HDE, 

HS-BFGS algorithm 

4 Building performance simulation tools and optimization ‘engines’ 

To provide an overview of building simulation programs used in optimization 

studies, this paper investigates the intensity of utilization of 20 major building simulation 

programs (among hundreds of tools
3
) as recommended in [40], including: EnergyPlus, 

TRNSYS, DOE-2, ESP-r, EQUEST, ECOTECT, DeST, Energy-10, IDE-ICE, Bsim, IES-

VE, PowerDomus, HEED, Ener-Win, SUNREL and Energy Express (BLAST, TAS, 

TRACE and HAP were not included here due to irrelevant results). The search was 

performed on 2/4/2013 on Scopus – the world’s largest abstract and citation database of 

peer-reviewed literature
4
, using the keyword group [name of a program; optimization; 

building] for the period 2000 - 2013, then refining by some other keywords to eliminate 

irrelevant results. Figure 3 shows an approximation of the utilization share of the major 

building simulation programs. It is easy to find overwhelming shares of EnergyPlus, 

TRNSYS, DOE-2 and ESP-r among others. Possible explanations are likely to be the text-

based format of inputs and outputs which facilitates the coupling with optimization 

algorithms and, of course, their strong capabilities as well. Interestingly, the utilization share 

of building simulation programs given by Google Scholar is quite similar to that shown in 

Figure 3. 

                                                 
3
 There have been 395 building energy tools being listed at http://apps1.eere.energy.gov/buildings 

[Accessed 15/3/2013]  
4
 http://www.info.sciverse.com/scopus [Accessed 15/3/2013] 
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Table 4 alphabetically introduces a number of mostly-used optimization programs 

found in building optimization literature and their key capabilities. Some other optimization 

tools that have rarely been mentioned by the BPS community are Topgui, Toplight, tools on 

Java environment… From the result of an interview of 28 building optimization experts 

[15], it was found that GenOpt [2] and MatLab environment [41] are mostly-used tools in 

building optimization. GenOpt is a free generic optimization tool designed to apply to 

BOPs, thus it is suitable for many purposes in BPS with acceptable complexity. A limitation 

of the current GenOpt versions is that it does not have any multi-objective optimization 

algorithm. MatLab optimization toolboxes and Dakota [42] are not specifically designed for 

building simulation-optimization; thus these tools require more complex skills to use. 

However, the Neural Network toolbox in Matlab and the surrogate functions in Dakota do 

allow users to replace a computationally expensive model by a surrogate model. On the 

building optimization point of view, the free tool MOBO [43] shows promising capabilities 

and may become the major optimization engine in coming years. Some authors in [15] 

recommend modeFrontier (a commercial code) [44] for building optimization. 
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Figure 3: Utilization share of major simulation programs in building optimization research
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Name Open 
source? 

Multi-
objective 

algorithm
? 

Parallel 
compu-

ting? 

Handling 
discrete + 

continuous 
variables? 

Parame
-tric 

study? 

Sensiti-
vity 

analysis? 

Generic 
for BPS 

programs
? 

Multiple 
algori-

thms? 

User 
inter-

face? 

Cost 
function 

flexibi-
lity? 

Parameter 
flexibility? 

Algori-
thmic 

extensi-
bility? 

Surrogate 
model? 

Operating system? 

Altair 
HyperStudy 

- + ? - + + + + + + + ? + Window 

BEopt + + + + + - - - + - +/- + - Window 

BOSS quattro + + + + + + + + + + ? + + Unix, Linux, Window 

DAKOTA + + + + + + + + + + + ? + Window, Linux 

GENE_ARCH + + - - - - - + ? + + - - ? 

GenOpt + - + + + - + + - + + + - Independent 

GoSUM - - + + - + + - + + + ? + Window 

iSIGHT - + - + + + + + + + + - - Window, Linux 

jEPlus+EA + + + + + - - + + - + - - Independent 

LionSolver - + - - - - + - + - - - + Window 

MatLab toolbox - + + + + + + + +/- + + + + Window, Mac, Linux 

MOBO + + + + - - + + + + + + - Independent 

modeFRONTIER - + + + - + + + + + + ? + Window, Linux 

ModelCenter - + + + - + + + + + + - - Window 

MultiOpt 2 - + ? + - - - - + - - - - Window 

Opt-E-Plus + + + + - - - - + - - + - Window 

ParadisEO + + ? + - - + + - + + + - Window, Mac, Linux 

TRNOPT - - - + + - - + + + + + - Window 

“+” means Yes; “-” means No; “?” means Unknown  

   

Table 4: An overview of optimization programs applied to building performance optimization 



Citation: Nguyen, A. T.; Reiter, S.; Rigo, P. A review on simulation-based optimization methods applied to building performance analysis. 

Applied Energy 113 (2014) 1043–1058 
Status: Postprint (Author’s version) 

5 Efficiency of the optimization methods in improving building 

performance 

It is important to know the capability of the simulation-based optimization method in 

improving design objectives such as indoor environment quality or building energy 

consumption. This allows designers to choose an appropriate method among a number of 

available approaches that can satisfy their time budget, resources and design objectives.  

First, this work considers some studies in cold and temperate climate. In [13], the 

authors found that a reduction of 23–49% in the space heating energy for the optimized 

house could be achieved compared with the reference detached house. Most optimal 

solutions could be seen as Finnish low-energy houses. Similar to these results, Suh et al. 

[45] found 24% and 33% reduction of heating and cooling energy in a post office building 

in Korea using a knowledge-based design method and the simulation-based optimization 

method, respectively. By performing optimization on EnergyPlus models of an office floor 

under 3 climates of the U.S., Wetter and Wright [46] found a saving of an order of 7% to 

32% of primary energy consumption, depending on the building location. In [47], optimal 

settings of optimization algorithms led to a reduction of 20.2% to 29.6% of the primary 

energy use by a large office building in temperate climates of the U.S. From these results, it 

is very likely that a reduction of 20% - 30% of building energy consumption is an 

achievable target using the building design optimization.  

However, the situation of warmer climates is likely not the same. In a study related 

to a large office building, Kampf et al. [47] found a reduction of total energy consumption 

of 7.1% in a warm climate (Florida, U.S.). Nguyen [24] improved thermal comfort and 

energy consumption in 3 typical existing dwellings in 2 running modes under 3 hot humid 

climates by performing the optimization on calibrated EnergyPlus models. The optimal 

performances were compared with the references, giving a straightforward estimate of 

optimization efficiency. In average, the author found that discomfort periods in the naturally 

ventilated dwellings could be reduced by 86.1%, but the life cycle cost (50-year energy cost 

+ construction cost) of the air-conditioned dwellings could only be reduced by 14.6%.   

Cost reduction in optimization of high-performance buildings seems to be very 

minor. Salminen et al. [48] tried to improve energy consumption of a LEED-certified 

commercial building in Finland. They found that the optimization method could further 

reduce up to 10% of the annual energy consumption, accompanied by an additional 

investment of about 0.6 million Euros. Without the additional investment, improvement 

could only reach 1.1%. 

Cost reductions by optimization methods clearly depend on the objective function to 

be minimized [24] and many other factors (climates, building models, optimization 

algorithms…). Due to very limited results from the literature and the variety of the design 

objectives in optimization studies, a robust quantification of optimization efficiency needs 

further investigations. 
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6 Challenges for simulation-based optimization in building performance 

analysis 

6.1 Handling discontinuous problems and those with multiple local minima 

In building design optimization, analysts must sometimes assign integer or discrete 

values to building design variables, which cause the simulation output to be disordered and 

discontinuous. Even with optimization problems where all inputs are continuous parameters, 

the nature of the algorithms in detailed building simulation programs itself often generates 

discontinuities in the simulation output [49; 32]. As an example, if the simulation program 

contains empirically assigned inputs (e.g. wind pressure coefficients), adaptive solvers with 

loose precision settings or iterative solvers using a convergence criterion (e.g. EnergyPlus 

program), simulation outputs are likely to be discontinuous. Such discontinuities can cause 

erratic behavior of optimization algorithms that result in failure or adversely affect on the 

convergence of the optimization algorithms [46]. Figure 4 shows an example of such 

discontinuities which caused the Hooke-Jeeves algorithm (a derivative-free optimization 

method) to stray away from the global minimum (at the lowest corner of the search space).  

 

Other authors argued that building energy simulation programs can generally be seen 

as black-box function generators; thus gradient information that is required by several 

mathematical optimization methods is entirely unavailable [50; 51]. Consequently gradient-

based optimization algorithms, e.g. Discrete Armijo Gradient algorithm [52], are not 

recommended for solving BOPs. On the other hand, a simulation program may employ 

iterative or heuristic solvers, low-order approximations of tabular data, or other numerical 

methods which produce noise to simulation outputs [51]. Thus the objective functions in 

BOPs are generally multi-modal and discontinuous (thus non-differentiable). Some 

optimization algorithms may fail to draw a distinction between a local optimal solution and 

a global one (or fall into a trap by a local one), and consider the local optimum as the final 

solution to the problem. An example is shown in Figure 5 which shows a possible failure of 

Figure 4: Discontinuity in energy consumption as a function of east and west window 

configurations. The dots show the optimization process of the Hooke-Jeeves algorithm [32] 
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the Simulated Annealing algorithm (due to inappropriate settings of the algorithm) in 

solving a multi-modal function.  

 

This raises a question of whether an optimization algorithm is suitable for the BOP 

at hand and how to define correct settings of both the optimization algorithm and the 

precision of simulation programs. Efficient and powerful search methods are obviously 

needed to explore such building problems. New simulation tools should be programmed 

such that the precision of solvers which are expected to cause large discontinuities in the 

outputs can be controlled [46]. Several numerical experiments [5; 46] have indicated that 

the meta-heuristic search method should be the first choice for BOPs. However, in large-

scale BOPs this method does not guarantee optimal solutions to be found after a finite 

number of iterations.  

6.2 Performance of optimization algorithms and the selection 

The demand of a search-method that works efficiently on a specific optimization 

problem has led to various optimization algorithms. As a result, the choice of optimization 

algorithms for a specific problem is crucial to yield the greatest reduction [54]. The problem 

of how to select an optimization method for a given BOP is not trivial and usually based on 

a number of considerations [2; 50]: 

- Natures of design variables: continuous variables, discrete variables or both; 

- The presence of constraints on the objective function; 

- Natures of objective functions (linear or nonlinear, convex or non-convex, 

continuous or discontinuous, number of local minima, etc.)    

- The availability of analytic first and second order derivatives of the objective 

functions; 

- Characteristics of the problem (static or dynamic…); 

- Performance of potential algorithms which have similar features. 

Providing a generic rule for the algorithm selection is generally infeasible due to the 

complexity and the diversity of real-world BOPs. However, by using the data from the 

literature related to building optimization, the trend of use of optimization algorithms can be 

estimated (see Figure 6). It can be seen that the stochastic population-based algorithms 

(GAs, PSO, Hybrid algorithms, evolutionary algorithms) were the most frequently used 

methods in building performance optimization. Such stochastic algorithms cannot guarantee 

that the best solution will be reached after a finite number of iterations, but they are used to 

obtain good solutions in a reasonable amount of time [44].  

Figure 5: If the temperature is very low with respect to the jump size, Simulated Annealing

risks a practical entrapment close to a local minimum (adapted from [53]) 
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There are a number of reasons that makes the GA popular among BPS communities: 

- Capability of handling both continuous and discrete variables, or both types; 

- Concurrent evaluation of n individuals in a population, allowing parallel 

simulations on multi-processor computers; 

- Working with a population of solutions makes GA naturally suited to solve 

multi-objective optimization problems [55]; 

- Robust in handling discontinuity, multi-modal and highly-constrained problems 

without being trapped at a local minimum; even with NP-hard problems [56]; 

- Robust to high simulation failure rates, as reported by J. Wright in [15]. 

The performance of optimization algorithms in solving BOPs was the interest of 

many researchers. It is sometimes considered as a criterion for selecting an optimization 

algorithm. Wetter and Wright [46] compared the performance of a Hooke-Jeeves algorithm 

and a GA in optimizing building energy consumption. Their result indicated that the GA 

outperformed the Hooke-Jeeves algorithm and the latter have been attracted in a local 

minimum. Wetter and Wright [5] compared the performance of 8 algorithms (Coordinate 

search algorithm, HJ algorithm, PSO, PSO that searches on a mesh, Hybrid PSO-HJ 

algorithm, Simple GA, Simplex algorithm of Nelder and Mead, Discrete Armijo gradient 

algorithm) in solving simple and complex building models using a low number of cost 

function evaluations. They found that the GA consistently got close to the best minimum 

and the Hybrid algorithm achieved the overall best cost reductions (although with a higher 

number of simulations than the simple GA). Performances of other algorithms were not 

stable and the use of Simplex algorithm and Discrete Armijo gradient algorithm were not 

recommended. Kampf et al. [47] compare the performance of two hybrid algorithms (PSO-

HJ and CMA-ES/HDE) in optimizing 5 standard benchmark functions (Ackley, Rastrigin, 

Rosenbrock, Sphere functions and a highly-constrained function) and real-world problems 

using EnergyPlus. They found that the CMA-ES/HDE performed better than the PSO-HJ in 

solving the benchmark functions with 10 dimensions or less. However, if the number of 

dimensions is larger than 10, the PSO-HJ worked better. Both these algorithms performed 

well with real-world BOPs on EnergyPlus models. Hamdy et al. [39] tested performance of 

three multi-objective algorithms, NSGA-II, aNSGA-II and pNSGA-II, on a BOP and 2 

benchmark test problems. They reported that the aNSGA-II found high-quality solutions 

close to the true Pareto front with fewer evaluations and achieved better convergence. 
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Elbeltagi et al. [57] compared performance of 5 evolutionary-based optimization algorithms, 

including GAs, memetic algorithms, particle swarm, ant-colony systems, and shuffled frog 

leaping, in solving benchmark functions and project management problems. They found that 

the behavior of each optimization algorithm in all test problems was consistent and that the 

PSO algorithm was likely to perform better than the others in terms of success rate and 

solution quality, while being second best in terms of processing time. 

Hybrid algorithms (e.g. PSO-GPS [2], GA-GPS [58] or CMA-ES/HDE [47; 59]) 

shows a remarkable capability in dealing with discontinuous, highly constrained mixed-

integer and/or multi-modal problems as frequently observed in building simulation outputs. 

The hybrid algorithms have been implemented in some computer programs (e.g. GenOpt, 

Matlab optimization toolbox…) that can be applied to building performance analysis. In 

GenOpt [2], Wetter introduced the Hybrid algorithm PSO-HJ in which the PSO is 

performed the search on a mesh, significantly reducing the number of cost evaluations 

called by the algorithm [60]. 

In [5; 47] optimization results have also indicated that the cost reduction by an 

algorithm not only depends on the natures of the algorithm, but also depends on the settings 

of algorithm parameters. It is necessary to stress that according to the so-called ‘no free 

lunch theorem’ [61], there is no single best algorithm for all optimization problems. Hence, 

algorithm selection and settings might involve trial and error. 

6.3 Multi-objective building optimization problems 

About 60% of the building optimization studies used the single-objective approach, 

e.g. only one objective function can be optimized in an optimization run [62]. However, in 

real-world building design problems designers often have to deal with conflict design 

criteria simultaneously [18; 63] such as minimum energy consumption versus maximum 

thermal comfort, minimum energy consumption versus minimum construction cost… 

Hence, multi-objective optimization is, in many cases, more relevant than the single-

objective approach.   

There have been several methods to solve a multi-objective problem. The most 

simplistic approach, known as “scalarization”, is to assign different weight factors to each 

criterion, and then the objective function will be simply the weighted sum of the criteria 

[64]. As an example, the multi-objective optimization will turn into a single-objective 

problem by the linear scalarization as follows: 

 
1

min ( )
n

i i
x X

i

w f x
∈

=
∑  (1) 

where wi is weight factor of the i
th

 objective function (wi > 0). 

The new objective function is a scalar measure. As an example, we consider an 

optimization problem of a thermal zone which consists of a construction cost function fc(X) 

and a comfort performance function fp(X). These functions could be integrated into a single 

objective function by assigning two weight factors (w1 and w2): 

 1 2( ) ( )  ( )c pf X w f X w f X= +  (2) 

Wang et al. [65] simultaneously optimized 3 objective functions using 3 equal 

weight factors to find optimal configurations of a building cooling – heating and power 

system. A drawback of this approach is the difficulty in estimating the weight factor wi 

because objective functions do not have the same metric or the same significance. In 

addition, the optimization can only give a unique optimal solution. Anyway, an estimate of 

the Pareto front can be achieved by running the optimization several times with different 

weight factors.  
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Another approach is to use the concept of Pareto optimality in which a set of trade-

off optimal solutions (a Pareto set) is examined and appropriate solutions are then 

determined. This approach is referred to as “multi-objective optimization” or “Pareto 

optimization”. For any given problem, the Pareto optimal set can be constituted by an 

infinite number of Pareto points. Pareto optimization strategies are, in most cases, aimed to 

provide only some elements of the Pareto set rather than the entire one. Due to the 

complexity of BOPs, researchers often use up to two objective functions, but a very few 

exceptions with 3 or more functions have been observed as shown in [37] (three objective 

functions were indoor environment quality, the carbon payback period, and  cash payback 

period time), in [66] (energy consumption, CO2 emission and initial investment cost) or in 

[38] (energy consumption, thermal comfort and initial investment cost). 

The problem of how to select the best solution from the Pareto set is not trivial as it 

depends on a number of aspects (e.g. the significance of objective functions, the demand of 

building investors…). This process is known as multi-criteria decision making. Many 

decision making techniques have been developed [67] such as “pros and cons”, “simple 

prioritization”, “satisficing”, “opportunity cost”, “bureaucratic”. Figure 7 presents a 

common strategy in engineering applications to select the best solution among the Pareto set 

if two objective functions are equally important. 

 

Although many Pareto optimization strategies have been developed as reviewed in 

[4], the multi-objective optimization with the GA seems the mostly used strategy in building 

performance analysis, for example multi-objective 3-phase GA in optimizing a detached 

dwelling [63], NSGA in [20; 27], MOGA in optimizing a green building model [16], 

NSGA-II in optimizing cellular fenestration on building façades [68].  Being a population-

based method, GAs are well suited to solve multi-objective optimization problems. A 

number of GA-based multi-objective optimization methods as been developed as reported in 

[69] among which the Vector evaluated GA (VEGA) [70], Multi-objective Genetic 

Algorithm (MOGA) [71], Niched Pareto Genetic Algorithm (NPGA) [72], Weight-based 

Genetic Algorithm (WBGA) [73], Non-dominated Sorting Genetic Algorithm (NSGA) [74], 

Fast Non-dominated Sorting Genetic Algorithm (NSGA-II) [75], Multi-objective 

Evolutionary Algorithm (MEA) [76] are frequently used in building research. Sometimes, 

strategies other than the GA was used such as Multi-objective Particle Swarm Optimization 

(MOPSO) in optimizing thermal comfort and building energy consumption [77], Multi-

objective Ant Colony Optimization (MACO) in optimizing building life cycle energy 

consumption [78]. As being observed from these studies, the used methods aim at producing 

Figure 7: Selection of the best solution from the Pareto set (closest to the utopia point) 
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a representative subset of the Pareto optimal set from which decision-makers can derive the 

most appropriate solution to the problem at hand.  

At present, there are some programs that provide the platforms for multi-objective 

optimization such as Matlab [41] optimization toolbox (with a MOGA algorithm); 

modeFRONTIER [44] (with a MOGA-II, an Adaptive Range Multi-objective Genetic 

Algorithm – ARMOGA, a Multi-objective Simulated Annealing – MOSA, a NSGA-II, a 

Fast Multi-objective Genetic Algorithm – FMOGA, a Multi-objective Game Theory – 

MOGT, a MOSPO); LionSOLVER [79] (with multi-objective Reactive search 

optimization); Dakota [42] (with a MOGA algorithm and a scalarization method); a revised 

GA implemented in GenOpt by Palonen et al. [58]; Multiopt2 [38] (with NSGA-II), MOBO 

[43] (with NSGA-II, Omni-optimizer, Brute force, random search). 

6.4 Issues related to optimization design variables 

The number of independent variables in the optimization is not restricted by most 

optimization algorithms, but should be limited on the order of 10 [2]. Figure 8 shows a 

statistical result of the number of optimization variables derived from 10 arbitrary studies 

[63; 80; 30; 81; 22; 20; 5; 18; 16; 54]. In average each optimization study used 15.1 

variables with a fairly high standard deviation of 5.6 (max = 24, min = 8). The number of 

independent variables is obviously dependent on the capability of the optimization 

algorithm and the complexity of the problem. However, an appropriate number of 

independent variables for a building optimization problem (BOP) are still subject to debate 

and further investigations on this topic are therefore needed. 

In ‘real-world’ BOPs, analysts sometimes have to deal with problems that have both 

discrete variables (e.g. building components) and continuous variables (e.g. design 

parameters). For example, the decision variable X1 of the night ventilation scheme must be 

either 1 or 0 in any optimal solution, modeling a yes/no decision and X1 is called a binary 

integer variable. Such problems are referred to as a “Mixed-Integer Programming” problem. 

Discrete variables generally make the optimization problem non-convex and discontinuous, 

and therefore far more difficult to solve [82; 83; 51]. Memory and computational cost may 

rise exponentially as more discrete variables are added in the problem [82]. Stochastic 

population-based algorithms (e.g. GA, evolutionary algorithms), which randomly generate 

and improve a population of candidate solutions, may satisfy the mixed-integer problem in 

optimization. Nevertheless, these methods are generally not able to assure “optimality” of 

the solution. It is generally recommended that discrete variables should be avoided by all 

possible means in optimization [84].  
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Constraints imposed on both independent and dependent variables are usually 

formulated in form of functions of these variables, e.g. 1 2 1x x+ ≤ . Variables’ bounds 

constitute a particular case of the more general constraints. For dependent variables’ 

constraints, most optimization algorithms force users to define constraints by using penalty 

or barrier functions, but some optimization tools and algorithms are able to handle 

constraints separately and automatically (e.g. Matlab optimization toolbox, MOBO [43], 

CONLIN method [85]…). Sometimes, a BOP may have "higher-level" constraints, e.g. the 

constraints that require a set of independent variables to be of non-repeating ordering 

integers - from 1 to n (as in traveling salesman problem). In building research, such a 

constraint type may occur, such as in optimization of heating systems where the choices of 

boiler types (A, B, C, D) and fuel options (gas, diesel, biomass, district heating) are 

mutually accepted or excluded. 

Constraints and "higher-level" constraints on both dependent and independent 

variables are often unavoidable in a BOP, but they often make the optimization problem 

more difficult to solve, especially equality constraints [86]. It is recommended that an 

equality constraint should be converted into an in-equality constraint where possible [14]. 

In [64] the authors imposed 12 constraints on the optimization of an HVAC system, 

including 6 coil design constraints, 4 fan envelope constraints, and 2 setpoint constraints. 

Nguyen [24] imposed a special thermal comfort constraint on the cost function as follows: 

 ( )
2

max

( )
( ) 10 max 0, %( ) 10cf x

f x TDH x
COST

+ −  ≜  (3) 

where fc(x) is construction cost; COSTmax is maximum construction cost; TDH%(x) 

is the total discomfort hours/year, must be smaller than 10%. Each time thermal comfort is 

violated, the penalty function (the rightmost term of equation (3)) will add a large positive 

term to the objective function.  

In order to maintain a reasonable number of design variables in the optimization, 

sensitivity analysis may be performed to screen out insignificant variables. Several 

sensitivity analysis techniques can be used such as local sensitivity analysis methods, 

screening methods, Monte Carlo-based methods, variance-based methods or “design of 

experiment” methods. Due to the complexity of detailed building simulation programs, 

simulation outputs are generally nonlinear, multi-modal, discontinuous [32; 5], non-

monotonic [87] and may contain both continuous and discrete variables, global sensitivity 

analysis rather than local one should be used. The Morris’s method, Sobol’s method and 

regression-based sensitivity indices seem to be the mostly-used measures of sensitivity [10; 

88; 24; 89]. Tian [90] provides a good review of sensitivity analysis methods applied to 

building energy analysis. Evins et al. [20] used a full-factorial DOE method to select 

influential factors of the design of a flat in UK for the optimization phases. They could 

obtain 21 highly significant variables among more than 100 design variables. Nguyen [24] 

used the Monte Carlo-based method and regression-based sensitivity indices to reduce the 

number of optimization variables to nearly a half. Figure 9 shows an example of sensitivity 

order of design variables from which significant variables were derived for the subsequent 

optimization. Although many commercial programs can perform sensitivity analysis, the 

authors recommend SimLab program [91] and Dakota [42] (free of charge) for such a task 

in BPS.  
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6.5 Optimization of computationally expensive models 

Simulation of detailed building models may take several minutes in building energy 

simulation [27] to several hours in computational fluid dynamics (CFD) simulation [92] to 

complete while the simulation-based optimization techniques often require hundreds or 

thousands of simulation evaluations. The optimization schemes may therefore become 

infeasible due to such computationally expensive building models. To overcome this, very 

simplified models instead of detailed building models can be used, as in [34; 93; 65]. This 

method has many limitations such as incapability in modeling complex building systems 

and phenomena, thus it is only suitable for research purposes. Particularly, in [21] Lee used 

a two-step optimization scheme to deal with his expensive CFD model. In the first step, Lee 

performed the optimization on the simple CFD model. Then he performed a few detailed 

CFD simulations on the optimal candidate solutions found in step 1 to refine the results. 

Other methods can be employed by reducing the population size and/or the number of 

generations. However, these reductions significantly lower the performance of optimization 

algorithms, possibly resulting in sub-optimal solutions [16]. In 1986, Fleury and Braibant 

[85] propose the CONLIN method that can deal with expensive structural models by 

replacing the primary model with a sequence of explicit approximate sub-problems by 

performing linearization. These explicit sub-problems are convex and separable, thus can be 

solved efficiently by using a dual method approach [94]. Consequently, the CONLIN 

method can handle mixed-integer and/or non-differential, computationally expensive 

problems as described in [95].   

Surrogate models are among promising solutions to this problem. A surrogate model 

(meta-model or emulator) is an approximation model of the original simulation model. It 

typically mimics the behavior of the original model to be able to produce the model 

responses at reduced computational cost.  

Establishing a surrogate model often goes through 3 major steps as follows: 
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- Sampling input vectors and calculating corresponding model responses, which 

constitute a database for training a surrogate model. 

- Constructing the surrogate model based on the database by selecting an 

appropriate method, e.g. Kriging, Support vector machine, artificial neural 

network (ANN). 

- Validating the model before being used as a “surrogate” of the original model. 

The second and the third steps may be repeated iteratively until the validation 

achieves success. In the context of optimization, surrogate models can speed convergence 

by reducing function evaluation cost and/or smoothing noisy response functions [42; 51] 

which are problematic in BOPs. After running the surrogate-based optimization, other 

refined optimization around the optimal points using the original model can be performed to 

obtain exact solutions. The most common strategy of the surrogate-based optimization 

method is presented in Figure 10.  

 

In some computer programs (e.g. MatLab [41], Dakota [42], modeFrontier [44]), 

several surrogate model choices are possible, which are categorized as response surface 

methods, data fits, multi-fidelity models, and reduced-order models, ANNs, Bayesian 

networks...  

In 2000, Klemm et al. [96] showed a pioneer effort in surrogate-based optimization 

by applying a polynomial regression method on CFD simulation results to derive explicit 

analytic objective functions, then optimizing them using a simple deterministic optimization 

method. Magnier and Haghighat [27] used TRNSYS simulations to train an ANN, then used 

the trained - validated ANN to couple with the GA to optimize thermal comfort and energy 

consumption. The database for training the ANN consists of output of 450 simulations. 

Time for generating the database was 3 weeks, but optimization time was very small. If 

direct coupling between TRNSYS and GA was used, it would need 10 year to finish the task 

[27]. Chen et al. [26] used a feed forwards neural network with one hidden layer for the 

identification of temperature in intelligent buildings and then optimize by the PSO. 

Eisenhower et al. [23] used the Support Vector Machines method to generate several meta-

models of a 30-zone EnergyPlus building model and then performed sensitivity analysis to 

select the most influential variables for optimization. The database used to generate the 

meta-models consists of 5000 simulated solutions. These authors stated that the 

optimization using the meta-model offers nearly equivalent results to those obtained by 

EnergyPlus model. Tresidder et al. [97] used Kriging surrogate model to optimize building 

CO2 emission and construction cost, and then compare the results against those given by the 

GA on the same design problem. They stated that the Kriging surrogate models was able to 

Figure 10: Surrogate models applied to building simulation - optimization   
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find the optimum in fewer simulation calls than the stand-alone GA and could find a better 

trade-off if the number of simulations was restricted. They also recommended that the use of 

Kriging models for optimization of complex buildings requires further investigations. In 

[92], Khan et al. used the “moving least squares method” to establish a surrogate model 

from extremely expensive CFD simulations, then optimized the design of a ventilation 

system in hospital wards by this surrogate model. Gengembre et al. [98] minimize 20-year 

life cycle cost of a single-zone building model using a Kriging surrogate model and the 

PSO. They concluded that the accuracy of their Kriging model is acceptable and such a 

surrogate model can further help designers in design space exploration with cheap 

simulation cost.  

The problem of sensitive objective function (a small deviation from the optimum 

variables can result in significant degradation of the objective function value) makes 

surrogate models (e.g. models by the ANN) possibly irrelevant in some optimization 

situations (see Figure 11). It is necessary to note that the use of a surrogate model instead of 

an ‘actual’ building model increases the uncertainty and the risk of accumulative errors in 

the whole optimization process. The accuracy and sensitivity of surrogate-based 

optimization is currently not a well-developed area, especially when the number of input 

variables is large [14], the cost function is highly discontinuous or in cases many discrete 

input variables exist. 

The strength and weakness of various surrogate methods is a great research field of 

computational and statistical science and well beyond the scope of the building simulation 

community. At present, there is no consensus on how to obtain the most reliable estimate of 

accuracy of a surrogate model, thus the correlation coefficient R² is often applied, as in [27; 

29]. Furthermore, the random sampling method of inputs, the number of building model 

evaluations used to construct and validate a surrogate model is still problematic and is often 

chosen empirically by analysts. It also needs more studies to see whether significant 

difference between optimization results given by a surrogate model and an ‘actual’ building 

model exists. These questions are explicitly challenges of the building research community. 

6.6 Building design optimization under uncertainty 

In optimization building design using simulation approaches, analysts often have to 

deal with uncertainty during various steps of the optimization, resulting in uncertain optimal 

solutions. The uncertainty may arise from design variables, the climate, building operation, 

building performance assessment criteria, noise in cost function evaluations by computer 

programs, vagueness in variables constraints, etc [36; 14]. Thus, optimal solutions must not 

only satisfy the requirement of building performance but also be robust to small deviations 

of optimization inputs and constraints. Such a task is referred to as “robust design 

optimization” (RDO). RDO is defined as a methodology to optimize the design which is 

insensitive to various variations [99] (e.g. environment, systems or models). A simple 

illustration of this concept is explained in Figure 11. Instead of looking for the sensitive 

global optimum x1, one should find the local, but robust optimum x2. The performance of 

the solution x2 has a small tolerance with respect to its uncertainty. 
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Unlike deterministic optimization, in RDO one has to deal with the probabilistic 

functional of the objective functions. The model outputs are usually represented in terms of 

moments like “mean” and “standard deviation” [44]. The simplest mathematical formulation 

of a RDO problem can be written as follows: 

find X to minimize:  

 ( , ) ( ( , ), ( , ))f ff X p F X p X pµ σ=ɶ  (4) 

subject to: g(X,p) ≥ 0 and/or h(X,p) = 0; 

where 

X = (x1, x2, …, xn) is a design variable vector, subject to 
l u

i i ix x x−∞ ≤ ≤ ≤ ≤ +∞ ; p is 

a system constant parameter vector (both X and p could be uncertain); ( , )f X pµ and 

( , )f X pσ  are the mean and standard deviation functions of the original objective function 

f(·) under uncertainty variations of X and p; F(·) is the reformulated optimization objective 

function with respect to ( , )f X pµ  and ( , )f X pσ .  

Equation (4) means to find a solution that provides lowest mean cost function and 

minimum standard deviation simultaneously. The simplest method for solving the problem 

(4) is to apply two weight factors (as introduced in equation (2)) on ( )f Xµ  and ( )f Xσ  

functions, then treat the function F(·) as a single-objective optimization problem. This 

method is sometimes applied to building studies, as in [100; 101]. For more sophisticated 

approaches, readers are asked to refer to [99]. 

Pioneer studies on optimization under uncertainty can be traced back to the 1950s 

[102]. Since then this research field has become a “fertile ground” for researchers as 

reviewed in references [103; 99]. To accurately evaluate the robustness of candidate 

solutions with respect to uncertainties, a significant amount of extra function evaluations is 

needed [104]. Building optimization problems are inherently difficult and time-consuming, 

and they generally become even more difficult due to additional efforts to deal with these 

uncertainties, that may result in significant computational burden. It is therefore essential to 

filter out low influential inputs and simplify the RDO by using sensitivity analysis [24; 23; 

20]. Another method is to use surrogate models (meta-models) to replace computationally 

expensive real building simulation models in RDO. 

By testing on 6 benchmark functions, Kruisselbrink, et al. [104] found that the 

Kriging-based method for finding robust optima outperformed the tested benchmark 

methods (single evaluation and multi evaluation method) proposed by other authors. Hopfe 

Figure 11: Sensitive and robust optimal solutions of a single-variable function (adapted 

from [100]) 
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et al. [36] used a Kriging model (a surrogate) to run the optimization with reduced 

simulation time and to examine the robustness of optimal Pareto fronts under input 

uncertainties of an office building model. They found that it was possible to find a robust 

Pareto front in multi-objective optimization with the support of a Kriging model. Huang, et 

al. [100] applied RDO in solving smoke-control design problem in buildings using CFD and 

the GA. The design objective is to maximize ventilation flow rates through an opening to 

expel the smoke caused by fire. The robust optimal solutions were then compared with the 

deterministic optimal counterparts. They achieved robust optimal solutions whose 

performance is slightly less competitive (lower flow rates) but more robust to environmental 

fluctuations. Nevertheless, their study only has academic meanings rather than real-world 

applications because the standard deviations of these two groups of optimal solutions were 

too small - 0.0226 and 0.0211, respectively and the CFD mesh was too coarse to reduce 

optimization time. Rezvan el al. [101] performed robust optimization of EnergyPlus energy 

system model of a 400-bed hospital to face the uncertain energy demand. By adjusting the 

penalty and degree of solution robustness parameters in the objective function, they reached 

robust optimal solutions with lower objective costs and more stable system performances.   

RDO is not a new challenge in many engineering applications, especially in the 

fields of structural engineering and aerospace engineering which require stringent criteria on 

system reliability and robustness [105; 106]. However, in building energy analysis it is 

likely at a start, raising an interesting question of whether robust optimal building 

performance is problematic. More investigations are therefore necessary to determine the 

significance, necessity, methods and applications of RDO in BOPs. 

6.7 Integration of optimization methods into BPS and conventional design tools 

High performance buildings require an efficient performance-based design process 

which forces the implementation/integration of optimization techniques into BPS programs. 

However at present, bidirectional interfaces between optimization “engine” and BPS tools 

that automate the design alternative-evaluation loop are still under development [15]. 

Generic optimization tools introduced in section 4 only provide limited coupling flexibility 

and are not suitable for design professionals. According to the authors, several technical 

barriers that delay the popularization optimization techniques in conventional BPS studies, 

including:  

- The barrier of coupling interfaces between BPS tools and optimization packages,  

- The trade-off among conflict performance criteria of optimization methods (e.g. 

“accuracy vs simplicity”; “capability vs usability”; “flexibility vs visualization”; 

“efficiency vs time cost”…), 

- Other barriers: the multi-disciplinary nature of building optimization techniques; the 

limit of current computational speed; the lack of government policies that pushes the 

design of high performance buildings; etc.   

Zhou et al. [107] showed an effort to implement some optimization algorithms into 

EnergyPlus simulation package so as to free users from coupling between this tool and 

optimization algorithms. However, the optimization algorithms integrated were the direct 

search family which considerably limited the search performance. Monjour et al. [108] gave 

another effort to develop ArDOT program which is able to automate the coupling of 

existing simulation engines (EnergyPlus) with formal optimization methods through neutral 

data standards for seamless integration. Attia et al. [109] introduced an effort to develop a 

zero energy building design support tool (ZEBO) which an aim of facilitating the 

advantages of BPS in early design stages of a building project in hot climates. These efforts, 
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however, have only a moderate contribution in removing the existing barriers between 

optimization and building simulation. 

BEopt [110] and Op-E-Plus [111] are two optimization platforms based on multi-

objective optimization techniques to explore a large parameter space and find economically 

valid energy-saving solutions. They use EnergyPlus and/or DOE-2 and a sequential search 

technique as simulation and optimization engine, respectively. These two computer 

programs with user-friendly interfaces can be considered as fully-functional simulation-

optimization tools that can be used in building design practice.  

7 Summary and conclusions 

Simulation-based optimization is undoubtedly a promising approach to achieve 

many building design targets, opening a new era of design to architects and engineers. This 

paper provides an overview on optimization methods applied to building performance 

analysis. Building design optimization is inherently a complex multi-disciplinary technique 

which involves many sciences, i.e. mathematics, engineering, environmental science, 

economics, computer science, etc. This paper can be broadly divided into two parts. The 

first part goes through the fundamental concepts, categories and procedures of BOPs. The 

remaining part describes the main challenges and gives many discussions and trends in 

building simulation-based optimization.  

The major obstacles in solving BOPs by simulation-based methods involve the 

complex natures of building simulation outputs, the expensive computational cost, the scale 

of the problems, multi-objective design problems, and the uncertainty of many factors 

during the optimization, including design variables, environmental variables, model and 

constraint uncertainty, etc. Future research should therefore be oriented towards improving 

the efficiency of search techniques and approximation methods (surrogate models) for large-

scale BOPs and reducing time and effort for such activities. In addition, further effort is 

required to quantify the uncertainty of this design method in optimal solutions so as to 

improve building performance stability. 

The survey in the paper seems to confirm that EnergyPlus and TRNSYS are the 

mostly-used building simulation programs in optimization studies. The mostly used 

optimization “engines” seem to be GenOpt and Matlab optimization toolboxes while the 

meta-heuristic search algorithms (e.g. GA, PSO) are the most popular algorithmic technique 

applied to BOPs. However, the applications of building optimization in real-world design 

challenges are still in the early stage of development. There are a lot of building simulation 

programs and optimization tools, but there are also many obstacles in coupling strategies, 

usability, flexibility and efficiency (i.e. in term of both time and performance improvement) 

that partly inhibit the propagation of optimization techniques in building design practice.   

The rapidly increased trend of the number of building optimization studies in the last 

two decades has demonstrated a great interest of the building research community on this 

issue and there is little indication that this will change in the near future. Motivations of this 

movement are the progress of computer science and the more stringent requirements of 

design of high-performance buildings, e.g. green building codes, passivhaus standards, zero-

energy buildings... Challenges and obstacles are still ahead, but the authors strongly believe 

that the optimization method will soon become a standard norm within the conventional 

building design process. 
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