[en] In this study, the crystal structure of a class C beta-lactamase from a psychrophilic organism, Pseudomonas fluorescens, has been refined to 2.2 A resolution. It is one of the few solved crystal structures of psychrophilic proteins. The structure was compared with those of homologous mesophilic enzymes and of another, modeled, psychrophilic protein. The elucidation of the 3D structure of this enzyme provides additional insights into the features involved in cold adaptation. Structure comparison of the psychrophilic and mesophilic beta-lactamases shows that electrostatics seems to play a major role in low-temperature adaptation, with a lower total number of ionic interactions for cold enzymes. The psychrophilic enzymes are also characterized by a decreased number of hydrogen bonds, a lower content of prolines, and a lower percentage of arginines in comparison with lysines. All these features make the structure more flexible so that the enzyme can behave as an efficient catalyst at low temperatures.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Michaux, Catherine
Massant, Jan
Kerff, Frédéric ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Frère, Jean-Marie ; Université de Liège - ULiège > Centre d'ingénierie des protéines
Docquier, Jean-Denis ; Université de Liège - ULiège > Département des sciences de la vie > Centre d'ingénierie des protéines
Vandenberghe, Isabel
Samyn, Bart
Pierrard, Annick ; Université de Liège - ULiège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation
Feller, Georges ; Université de Liège - ULiège > Département des sciences de la vie > Labo de biochimie
Charlier, Paulette ; Université de Liège - ULiège > Département des sciences de la vie > Cristallographie des macromolécules biologiques
Van Beeumen, Jozef
Wouters, Johan
Language :
English
Title :
Crystal structure of a cold-adapted class C beta-lactamase.
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
Bush K, Jacoby GA Medeiros AA (1995) A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother 39, 1211 1233.
Pierrard A, Ledent P, Docquier JD, Feller G, Gerday C Frere JM (1998) Inducible class C β-lactamases produced by psychrophilic bacteria. FEMS Microbiol Lett 161, 311 315.
Levy M Miller SL (1998) The stability of the RNA bases: implications for the origin of life. Proc Natl Acad Sci USA 95, 7933 7938.
Kumar S, Tsai CJ Nussinov R (2002) Maximal stabilities of reversible two-state proteins. Biochemistry 41, 5359 5374.
Demirjian DC, Moris-Varas F Cassidy CS (2001) Enzymes from extremophiles. Curr Opin Chem Biol 5, 144 151.
Feller G, Narinx E, Arpigny JL, Aittaleb M, Baise E, Genicot S Gerday C (1996) Enzymes from psychrophilic organisms. FEMS Microbiol Rev 18, 189 202.
Herbert RA (1992) A perspective on the biotechnological potential of extremophiles. Trends Biotechnol 10, 395 402.
Georlette D, Blaise V, Collins T, D'Amico S, Gratia E, Hoyoux A, Marx JC, Sonan G, Feller G Gerday C (2004) Some like it cold: biocatalysis at low temperatures. FEMS Microbiol Rev 28, 25 42.
D'Amico S, Collins T, Marx J-C, Feller G Gerday C (2006) Psychrophilic microorganisms: challenges for life. EMBO Rep 7, 385 389.
Johns GC Somero GN (2004) Evolutionary convergence in adaptation of proteins to temperature: A4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol Biol Evol 21, 314 320.
Lonhienne T, Gerday C Feller G (2000) Psychrophilic enzymes: revisiting the thermodynamic parameters of activation may explain local flexibility. Biochim Biophys Acta 1543, 1 10.
Feller G (2003) Molecular adaptations to cold in psychrophilic enzymes. Cell Mol Life Sci 60, 648 662.
Feller G Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1, 200 208.
Feller G (2007) Life at low temperatures: is disorder the driving force? Extremophiles 11, 211 216.
Collins T, Meuwis MA, Gerday C Feller G (2003) Activity, stability and flexibility in glycosidases adapted to extreme thermal environments. J Mol Biol 328, 419 428.
D'Amico S, Marx JC, Gerday C Feller G (2003) Activity-stability relationships in extremophilic enzymes. J Biol Chem 278, 7891 7896.
D'Amico S, Gerday C Feller G (2003) Temperature adaptation of proteins: engineering mesophilic-like activity and stability in a cold-adapted alphaamylase. J Mol Biol 332, 981 988.
Leiros HKS, Willassen NP Smalas AO (2000) Structural comparison of psychrophilic and mesophilic trypsins - elucidating the molecular basis of cold-adaptation. Eur J Biochem 267, 1039 1049.
Svingor A, Kardos J, Hajdu I, Nemeth A Zavodszky P (2001) A better enzyme to cope with cold. Comparative flexibility studies on psychrotrophic, mesophilic, and thermophilic IPMDHs. J Biol Chem 276, 28121 28125.
Kim S-Y, Hwang KY, Kim S-H, Sung H-C, Han YS Cho Y (1999) Structural basis for cold adaptation. Sequence, biochemical properties, and crystal structure of malate dehydrogenase from a psychrophile Aquaspirillium arcticum. J Biol Chem 274, 11761 11767.
Van Petegem F, Collins T, Meuwis MA, Gerday C, Feller G Van Beeumen J (2003) The structure of a cold-adapted family 8 xylanase at 1.3 A resolution. Structural adaptations to cold and investgation of the active site. J Biol Chem 278, 7531 7539.
Georlette D, Damien B, Blaise V, Depiereux E, Uversky VN, Gerday C Feller G (2003) Structural and functional adaptations to extreme temperatures in psychrophilic, mesophilic, and thermophilic DNA ligases. J Biol Chem 278, 37015 37023.
Bae E Phillips GN Jr. (2004) Structures and analysis of highly homologous psychrophilic, mesophilic, and thermophilic adenylate kinases. J Biol Chem 279, 28202 28208.
Coquelle N, Fioravanti E, Weik M, Vellieux F Madern D (2007) Activity, stability and structural studies of lactate dehydrogenases adapted to extreme thermal environments. J Mol Biol 374, 547 562.
Fedy A-E, Yang N, Martinez A, Leiros H-KS Steen IH (2007) Structural and functional properties of isocitrate dehydrogenase from the psychrophilic bacterium desulfotalae psychrophila reveal a cold-active enzyme with an unusual high thermal stability. J Mol Biol 372, 130 149.
Russell NJ (2000) Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 83 90.
Collins T, D'Amico S, Marx J-C, Feller G Gerday C (2007) Cold adapted enzymes. In Physiology and Biochemistry of Extremophiles (Gerday C Glansdorff N, eds pp. 165 179. ASM Press, Washington, DC.
Feller G Gerday C (1997) Psychrophilic enzymes: molecular basis of cold adaptation. Cell Mol Life Sci 53, 830 841.
Matsumura N, Minami S Mitsuhashi S (1998) Sequences of homologous beta-lactamases from clinical isolates of Serratia marcescens with different substrate specificities. Antimicrob Agents Chemother 42, 176 179.
Beadle BM, McGovern SL, Patera A Shoichet BK (1999) Functional analyses of AmpC beta-lactamase through differential stability. Protein Sci 8, 1816 1824.
Frère J-M (1995) Beta-lactamases and bacterial resistance to antibiotics. Mol Microbiol 16, 385 395.
Joris B, Ledent P, Dideberg O, Fonze E, Lamotte-Brasseur J, Kelly JA, Ghuysen JM Frere JM (1991) Comparison of the sequences of class A beta-lactamases and of the secondary structure elements of penicillin- recognizing proteins. Antimicrob Agents Chemother 35, 2294 2301.
D'Amico S, Sohier JS Feller G (2006) Kinetics and energetics of ligand binding determined by microcalorimetry: insights into active site mobility in a psychrophilic alpha-amylase. J Mol Biol 358, 1296 1304.
Perl D, Mueller U, Heinemann U Schmid FX (2000) Two exposed amino acid residues confer thermostability on a cold shock protein. Nat Struct Biol 7, 380 383.
Siddiqui KS, Poljak A, Guilhaus M, De Francisci D, Curmi PM, Feller G, D'Amico S, Gerday C, Uversky VN Cavicchioli R (2006) Role of lysine versus arginine in enzyme cold-adaptation: modifying lysine to homo-arginine stabilizes the cold-adapted alpha-amylase from Pseudoalteramonas haloplanktis. Proteins 64, 486 501.
Mrabet NT, Van den Broeck A, Van den brande I, Stanssens P, Laroche Y, Lambeir AM, Matthijssens G, Jenkins J, Chiadmi M, van Tilbeurgh H et al. (1992) Arginine residues as stabilizing elements in proteins. Biochemistry 31, 2239 2253.
Ikai A (1980) Thermostability and aliphatic index of globular proteins. J Biochem (Tokyo) 88, 1895 1898.
Feller G, Zekhnini Z, Lamotte-Brasseur J Gerday C (1997) Enzymes from cold-adapted microorganisms. The class C β-lactamase from the antarctic psychrophile Psychrobacter immobilis A5. Eur J Biochem 244, 186 191.
Leiros HK, Willassen NP Smalas AO (1999) Residue determinants and sequence analysis of cold-adapted trypsins. Extremophiles 3, 205 219.
Violot S, Aghajari N, Czjzek M, Feller G, Sonan GK, Gouet P, Gerday C, Haser R Receveur-Brechot V (2005) Structure of a full length psychrophilic cellulase from Pseudoalteromonas haloplanktis revealed by X-ray diffraction and small angle X-ray scattering. J Mol Biol 348, 1211 1224.
Gianese G, Bossa F Pascarella S (2002) Comparative structural analysis of psychrophilic and meso- and thermophilic enzymes. Proteins 47, 236 249.
Joris B, De Meester F, Galleni M, Reckinger G, Coyette J Frère J-M (1985) The β-lactamase of Enterobacter cloacae P99. Chemical properties, N-terminal sequence and interaction with 6β-halogenopenicillanates. Biochem J 228, 241 248.
Galleni M, Amicosante G Frère J-M (1988) A survey of the kinetic parameters of class C β-lactamases. Cephalosporins and other β-lactam compounds. Biochem J 255, 123 129.
Vanhove M, Raquet X Frere JM (1995) Investigation of the folding pathway of the TEM-1 beta-lactamase. Proteins 22, 110 118.
Otwinowski Z Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276, 307 326.
Navaza J (1994) AMoRe: an automated package for molecular replacement. Acta Crystallogr A 50, 157 163.
Lobkovsky E, Moews PC, Liu H, Zhao H, Frere JM Knox JR (1993) Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. Proc Natl Acad Sci USA 90, 11257 11261.
Sheldrick GM (1997) SHELXS97 and SHELXL97. University of Göttingen, Göttingen.
McRee DE (1999) XtalView 4.0. Scripps Research Institute, La Jolla, CA.
Laskowski RA, MacArthur MW, Moss DS Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26, 283 291.
Lambert C, Leonard N, De Bolle X Depiereux E (2002) ESyPred3D: prediction of protein 3D structures. Bioinformatics 18, 1250 1256.
Neshich G, Togawa RC, Mancini AL, Kuser PR, Yamagishi ME, Pappas G Jr., Torres WV, Fonseca e Campos T, Ferreira LL, Luna FM et al. (2003) STING Millennium: a web-based suite of programs for comprehensive and simultaneous analysis of protein structure and sequence. Nucleic Acids Res 31, 3386 3392.
Hubbard SJ Thornton JM (1993) NACCESS. Department of Biochemistry and Molecular Biology, University College London, London.
Galleni M Frère J-M (1988) A survey of the kinetic parameters of class C β-lactamases. Penicillins. Biochem J 255, 119 122.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.