[en] The $S^\nu$ spaces have been introduced in 2004 by S. Jaffard in the context of multifractal analysis. In comparison with Besov spaces (the classical functional setting to study signals), these spaces of functions related to the distribution of wavelet coefficients allow to obtain more information on the Hölder regularity of a signal.
From a point of view of functional analysis, the $S^nu$ spaces can be considered as sequence spaces (because they are robust). Some properties (topology, complete metric, $p$-locally convexity,...) have been studied.
The purpose of the talk is to present the beginning of an adaptation of the $S^nu$ spaces when the discrete wavelet coefficients are replaced by continuous wavelet transform coefficients.
Disciplines :
Mathematics
Author, co-author :
Simons, Laurent ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Bastin, Françoise ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Language :
English
Title :
An adaptation of $S^{\nu}$ spaces
Publication date :
31 May 2013
Event name :
Mini-cours, Analyse fonctionnelle et harmonique et théorie des opérateurs