[en] The kidney is faced to an impairment of oxygen extraction during sepsis which is well-known to be a risk factor for the development of acute kidney injury (AKI). Recent research activities in the mechanisms involved in the development of AKI in sepsis emphasize the central role of hemodynamic and inflammatory events. More particularly, two mechanisms are suggested to explain the inability of the injured kidney to extract oxygen: tissue hypoxia and cellular energetic metabolism dysfunction. Our working hypothesis of the pathophysiology of AKI is based on cellular respiratory dysfunction due to the inflammatory response inherent to sepsis.
To study the mechanism of oxygen regulation in inflammation-induced acute kidney injury, we investigate the effects of a bacterial endotoxin (lipopolysaccharide, LPS) on the basal respiration of proximal tubular epithelial cells (HK-2) by ESR oximetry. This method has shown that HK-2 cells exhibit a decreased oxygen consumption rate when treated with LPS. Surprisingly, this cellular respiration alteration persists even after the stress factor was removed. We suggested that this irreversible decrease in renal oxygen consumption after LPS challenge is related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells.
This decrease was accompanied by increased nitric oxide (NO) production as measured by a spin trapping technique using ESR spectroscopy. This method is based on the trapping of NO by a metal-chelator complex consisting of N-methyl-D-glucamine dithiocarbamate (MGD) and reduced iron (Fe2+) forming a water-soluble NO-FeMGD complex detected by ESR. Since inducible NO synthase (iNOS) has been shown to play an important role in sepsis-induced AKI, the iNOS inhibitor L-NMMA (L-NG-monomethyl Arginine citrate) was tested in this in vitro model. L-NMMA blocked NO generation and permitted the HK-2 cells to recover a normal cellular respiration.
Overall, ESR spectroscopy and the model of HK-2 cells exposed to LPS displays some key features of inflammation-induced acute kidney injury.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.