1. BACKGROUND

Sepsis can be considered as a heterogeneous disease process generated by a complex interaction of pathogens and host inflammatory response. It may lead to organ dysfunction distant from the primary site of infection and cause downstream effects such as multiple organ failure [1].

The kidney is one of the target organs of sepsis which is well-known to be a risk factor for the development of acute kidney injury (AKI). Recent research activities in the mechanisms involved in the development of AKI in sepsis emphasize the central role of hemodynamic and inflammatory events.

More particularly, two mechanisms are suggested to explain the inability of the injured kidney to extract oxygen: tissue hypoxia and cellular energetic metabolism dysfunction [2]. Our working hypothesis of the pathophysiology of AKI is based on cellular respiratory dysfunction due to the inflammatory response inherent to sepsis.

2. In Vitro Model

We developed an in vitro model of inflammation-induced acute kidney injury using HK-2 cells exposed to lipopolysaccharide (LPS) [3].

HK-2 cells derived from human proximal tubular cell (PTC) of a human kidney, were cultured in DMEM supplemented with 10% FBS, 2 ml L-Glutamine, 100 U/ml Penicillin and 100 µg/ml Streptomycin.

To stimulate the pro-inflammatory state of PTC, cells were exposed to LPS from E. coli O111:B4. LPS is released from the gram-negative bacteria and is one of the major initiators inflammation response during sepsis. LPS is known to produce an early rise in cytokines through activation of Toll-like receptor.

One concentration (1 µg/ml) and different incubation time (1h to 24h) were tested.

3. ESR Oximetry

Objective

To characterize renal oxygen respiration in the inflammation-induced model of AKI.

Principle

- O2 paramagnetic molecule with 2 unpaired electrons and very rapid relaxation time
- 1H-NMR: oxygen sensor
- O2 influences spin-lattice and spin-spin relaxation times of 1H-NMR

Heinberg: An increase in oxygen concentration increases the ESR spectral line width of the probe.

Influence of LPS

- The basal respiration of LPS-treated HK-2 cells is altered and presents a strong decrease in the oxygen consumption rates.
- This cellular respiration alteration persists even after the stress factor was removed.
- This irreversible decrease in renal oxygen consumption after LPS challenge may be related to a pathologic metabolic down-regulation such as a lack of oxygen utilization by cells [4].

Influence of Drugs

- Reovastatin and Tempol: Antioxidants
- L-NMMA: Nitric oxide synthase inhibitors
- When treated with reovastatin and tempol, the oxygen consumption rate measured remains low.
- When treated with L-NMMA, HK-2 cells recover a normal cellular respiration.

The signaling pathway by which LPS affects HK-2 cells metabolism mainly involves NO rather than ROS.

4. Spin Trapping

Objective

To detect inflammation mediators (ROS and NO) that may play a role in this inflammation-induced model of AKI.

Principle

- Free radicals
- Spin trap

ROS Detection with POBN/EtOH

Test Reaction: Fe2++ + H2O2 → Fe3++ + OH• + O2

- POBN localizes inside cells and is very specific to OH•
- ESR-scavenger OH and the ethoxy radical is trapped by POBN to form POBN-ethoxy adducts (α=0.677; α=1.708)

- After LPS treatment, no spectrum of POBN/ethoxy adducts was observed in HK-2 cells.
- ROS may not be the major mediator in the induction of LPS stress.

NO Detection with MGD/Fe2+

Test Reaction: SIN = 1 → SIN = 1c + NO

- Although NO is a paramagnetic compound, it is ESR silent at T=20°C in aqueous solution.
- When NO is trapped with [Fe2+ (MGD)], the resulting nitrosyl complex is stable and ESR-detectable
- Using the Griess test, we have observed that the decrease in O2 consumption is accompanied by an increased nitric oxide (NO) production.
- This observation has to be confirmed by ESR spectroscopy.

CONCLUSIONS

Overall, ESR spectroscopy and the model of HK-2 cells exposed to LPS display some key features of inflammation-induced acute kidney injury:

1. Alteration in the renal cellular respiratory function
2. Role of NO rather than ROS in the signalling pathway
3. Role of ROS in the generation of NO

OPEN QUESTIONS

- Since L-NMMA permitted the HK-2 cells to recover a normal cellular respiration, does it block NO generation?
- Is it possible to detect the activation of inducible NO synthase?
- Are mitochondrial alterations the mechanism of HK-2 cells basal respiratory perturbations during inflammation?

Acknowledgements

The authors thank the Laboratory of Biomedical Magnetic Resonance for the use of the Bruker ESR spectrometer.

This work was supported by the “Fondation Nationale des Jeux Olympiques” (FNJ) and the University of Liége (FUI).

REFERENCES