CD40 triggering induces strong cytotoxic T lymphocyte responses to heat-killed Staphylococcus aureus immunization in mice: a new vaccine strategy for staphylococcal mastitis
Pujol, Julien ; Université de Liège - ULiège > Département de sciences fonctionnelles > Biochimie
Desmet, Christophe ; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Drion, Pierre ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > GIGA-R:Méth. expér.des anim. de labo et éth. en expér. anim.
Farnir, Frédéric ; Université de Liège - ULiège > Département de productions animales > Biostatistiques et bioinformatique appliquées aux sc. vétér.
Mainil, Jacques ; Université de Liège - ULiège > Département des maladies infectieuses et parasitaires > Bactériologie et pathologie des maladies bactériennes
Lekeux, Pierre ; Université de Liège - ULiège > Département de sciences fonctionnelles > Physiologie
Bureau, Fabrice ; Université de Liège - ULiège > Département de sciences fonctionnelles > GIGA-R : Biochimie et biologie moléculaire
Fievez, Laurence ; Université de Liège - ULiège > Département de sciences fonctionnelles > GIGA-R : Biochimie et biologie moléculaire
Language :
English
Title :
CD40 triggering induces strong cytotoxic T lymphocyte responses to heat-killed Staphylococcus aureus immunization in mice: a new vaccine strategy for staphylococcal mastitis
Halasa T., Huijps K., Osteras O., Hogeveen H. Economic effects of bovine mastitis and mastitis management: a review. Vet Q 2007, 29:18-31.
DeGraves F.J., Fetrow J. Economics of mastitis and mastitis control. Vet Clin North Am Food Anim Pract 1993, 9:421-434.
Wilson D.J., Gonzalez R.N., Das H.H. Bovine mastitis pathogens in New York and Pennsylvania: prevalence and effects on somatic cell count and milk production. J Dairy Sci 1997, 80:2592-2598.
Watts J.L. Etiological agents of bovine mastitis. Vet Microbiol 1988, 16:41-66.
Middleton J.R. Staphylococcus aureus antigens and challenges in vaccine development. Expert Rev Vaccines 2008, 7:805-815.
Gresham H.D., Lowrance J.H., Caver T.E., Wilson B.S., Cheung A.L., Lindberg F.P. Survival of Staphylococcus aureus inside neutrophils contributes to infection. J Immunol 2000, 164:3713-3722.
Brouillette E., Grondin G., Shkreta L., Lacasse P., Talbot B.G. In vivo and in vitro demonstration that Staphylococcus aureus is an intracellular pathogen in the presence or absence of fibronectin-binding proteins. Microb Pathog 2003, 35:159-168.
Hebert A., Sayasith K., Senechal S., Dubreuil P., Lagace J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiol Lett 2000, 193:57-62.
Malouin F., Brouillette E., Martinez A., Boyll B.J., Toth J.L., Gage J.L., et al. Identification of antimicrobial compounds active against intracellular Staphylococcus aureus. FEMS Immunol Med Microbiol 2005, 45:245-252.
Bramley A.J., Patel A.H., O'Reilly M., Foster R., Foster T.J. Roles of alpha-toxin and beta-toxin in virulence of Staphylococcus aureus for the mouse mammary gland. Infect Immun 1989, 57:2489-2494.
Brouillette E., Lacasse P., Shkreta L., Belanger J., Grondin G., Diarra M.S., et al. DNA immunization against the clumping factor A (ClfA) of Staphylococcus aureus. Vaccine 2002, 20:2348-2357.
Carter E.W., Kerr D.E. Optimization of DNA-based vaccination in cows using green fluorescent protein and protein A as a prelude to immunization against staphylococcal mastitis. J Dairy Sci 2003, 86:1177-1186.
Luby C.D., Middleton J.R., Ma J., Rinehart C.L., Bucklin S., Kohler C., et al. Characterization of the antibody isotype response in serum and milk of heifers vaccinated with a Staphylococcus aureus bacterin (Lysigin). J Dairy Res 2007, 74:239-246.
Middleton J.R., Luby C.D., Adams D.S. Efficacy of vaccination against staphylococcal mastitis: a review and new data. Vet Microbiol 2009, 134:192-198.
Pereira U.P., Oliveira D.G., Mesquita L.R., Costa G.M., Pereira L.J. Efficacy of Staphylococcus aureus vaccines for bovine mastitis: a systematic review. Vet Microbiol 2011, 148:117-124.
Pellegrino M., Giraudo J., Raspanti C., Nagel R., Odierno L., Primo V., et al. Experimental trial in heifers vaccinated with Staphylococcus aureus avirulent mutant against bovine mastitis. Vet Microbiol 2008, 127:186-190.
Jabara H.H., Fu S.M., Geha R.S., Vercelli D. CD40 and IgE: synergism between anti-CD40 monoclonal antibody and interleukin 4 in the induction of IgE synthesis by highly purified human B cells. J Exp Med 1990, 172:1861-1864.
Banchereau J., de Paoli P., Valle A., Garcia E., Rousset F. Long-term human B cell lines dependent on interleukin-4 and antibody to CD40. Science 1991, 251:70-72.
Alderson M.R., Armitage R.J., Tough T.W., Strockbine L., Fanslow W.C., Spriggs M.K. CD40 expression by human monocytes: regulation by cytokines and activation of monocytes by the ligand for CD40. J Exp Med 1993, 178:669-674.
Caux C., Massacrier C., Vanbervliet B., Dubois B., Van Kooten C., Durand I., et al. Activation of human dendritic cells through CD40 cross-linking. J Exp Med 1994, 180:1263-1272.
Ridge J.P., Di Rosa F., Matzinger P. A conditioned dendritic cell can be a temporal bridge between a CD4+ T-helper and a T-killer cell. Nature 1998, 393:474-478.
Bennett S.R., Carbone F.R., Karamalis F., Flavell R.A., Miller J.F., Heath W.R. Help for cytotoxic-T-cell responses is mediated by CD40 signalling. Nature 1998, 393:478-480.
Schoenberger S.P., Toes R.E., van der Voort E.I., Offringa R., Melief C.J. T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature 1998, 393:480-483.
Gurunathan S., Irvine K.R., Wu C.Y., Cohen J.I., Thomas E., Prussin C., et al. CD40 ligand/trimer DNA enhances both humoral and cellular immune responses and induces protective immunity to infectious and tumor challenge. J Immunol 1998, 161:4563-4571.
Diehl L., den Boer A.T., Schoenberger S.P., van der Voort E.I., Schumacher T.N., Melief C.J., et al. CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 1999, 5:774-779.
French R.R., Chan H.T., Tutt A.L., Glennie M.J. CD40 antibody evokes a cytotoxic T-cell response that eradicates lymphoma and bypasses T-cell help. Nat Med 1999, 5:548-553.
Rolph M.S., Kaufmann S.H. CD40 signaling converts a minimally immunogenic antigen into a potent vaccine against the intracellular pathogen Listeria monocytogenes. J Immunol 2001, 166:5115-5121.
Chen G., Darrah P.A., Mosser D.M. Vaccination against the intracellular pathogens Leishmania major and L. amazonensis by directing CD40 ligand to macrophages. Infect Immun 2001, 69:3255-3263.
van Mierlo G.J., den Boer A.T., Medema J.P., van der Voort E.I., Fransen M.F., Offringa R., et al. CD40 stimulation leads to effective therapy of CD40(-) tumors through induction of strong systemic cytotoxic T lymphocyte immunity. Proc Natl Acad Sci USA 2002, 99:5561-5566.
Tutt A.L., O'Brien L., Hussain A., Crowther G.R., French R.R., Glennie M.J. T cell immunity to lymphoma following treatment with anti-CD40 monoclonal antibody. J Immunol 2002, 168:2720-2728.
Field A.E., Wagage S., Conrad S.M., Mosser D.M. Reduced pathology following infection with transgenic Leishmania major expressing murine CD40 ligand. Infect Immun 2007, 75:3140-3149.
Iida T., Shiba H., Misawa T., Ohashi T., Eto Y., Yanaga K. Immunogene therapy against colon cancer metastasis using an adenovirus vector expressing CD40 ligand. Surgery 2010, 148:925-935.
Yi Q., Szmania S., Freeman J., Qian J., Rosen N.A., Viswamitra S., et al. Optimizing dendritic cell-based immunotherapy in multiple myeloma: intranodal injections of idiotype-pulsed CD40 ligand-matured vaccines led to induction of type-1 and cytotoxic T-cell immune responses in patients. Br J Haematol 2010, 150:554-564.
Heath A.W., Wu W.W., Howard M.C. Monoclonal antibodies to murine CD40 define two distinct functional epitopes. Eur J Immunol 1994, 24:1828-1834.
Aichele P., Brduscha-Riem K., Oehen S., Odermatt B., Zinkernagel R.M., Hengartner H., et al. Peptide antigen treatment of naive and virus-immune mice: antigen-specific tolerance versus immunopathology. Immunity 1997, 6:519-529.
Brouillette E., Grondin G., Lefebvre C., Talbot B.G., Malouin F. Mouse mastitis model of infection for antimicrobial compound efficacy studies against intracellular and extracellular forms of Staphylococcus aureus. Vet Microbiol 2004, 101:253-262.
Boulanger D., Brouillette E., Jaspar F., Malouin F., Mainil J., Bureau F., et al. Helenalin reduces Staphylococcus aureus infection in vitro and in vivo. Vet Microbiol 2007, 119:330-338.
Lefrancois L., Altman J.D., Williams K., Olson S. Soluble antigen and CD40 triggering are sufficient to induce primary and memory cytotoxic T cells. J Immunol 2000, 164:725-732.
Bonifaz L.C., Bonnyay D.P., Charalambous A., Darguste D.I., Fujii S., Soares H., et al. In vivo targeting of antigens to maturing dendritic cells via the DEC-205 receptor improves T cell vaccination. J Exp Med 2004, 199:815-824.
Quezada S.A., Jarvinen L.Z., Lind E.F., Noelle R.J. CD40/CD154 interactions at the interface of tolerance and immunity. Annu Rev Immunol 2004, 22:307-328.
Lim S.Y., Bauermeister A., Kjonaas R.A., Ghosh S.K. Phytol-based novel adjuvants in vaccine formulation. 2. Assessment of efficacy in the induction of protective immune responses to lethal bacterial infections in mice. J Immune Based Ther Vaccines 2006, 4:5.
Ahonen C.L., Doxsee C.L., McGurran S.M., Riter T.R., Wade W.F., Barth R.J., et al. Combined TLR and CD40 triggering induces potent CD8+ T cell expansion with variable dependence on type I IFN. J Exp Med 2004, 199:775-784.
Wells J.W., Cowled C.J., Farzaneh F., Noble A. Combined triggering of dendritic cell receptors results in synergistic activation and potent cytotoxic immunity. J Immunol 2008, 181:3422-3431.
Medzhitov R., Preston-Hurlburt P., Janeway C.A. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997, 388:394-397.
Akira S., Takeda K., Kaisho T. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2001, 2:675-680.
Lahiri A., Das P., Chakravortty D. Engagement of TLR signaling as adjuvant: towards smarter vaccine and beyond. Vaccine 2008, 26:6777-6783.
Arbibe L., Mira J.P., Teusch N., Kline L., Guha M., Mackman N., et al. Toll-like receptor 2-mediated NF-kappa B activation requires a Rac1-dependent pathway. Nat Immunol 2000, 1:533-540.
Yang W., Zerbe H., Petzl W., Brunner R., Günther J., Draing C., et al. Bovine TLR2 and TLR4 properly transduce signals from Staphylococcus aureus and E. coli, but S. aureus fails to both activate NF-kappaB in mammary epithelial cells and to quickly induce TNFalpha and interleukin-8 (CXCL8) expression in the udder. Mol Immunol 2008, 45:1385-1397.
Brouillette E., Malouin F. The pathogenesis and control of Staphylococcus aureus-induced mastitis: study models in the mouse. Microbes Infect 2005, 7:560-568.
Sutra L., Poutrel B. Virulence factors involved in the pathogenesis of bovine intramammary infections due to Staphylococcus aureus. J Med Microbiol 1994, 40:79-89.