Abstract :
[en] While Multi-Variate Pattern Analysis techniques based on machine learning have now been regularly applied to neuroimaging data, decoding brain activity is usually performed in highly controlled experimental paradigms. In more realistic conditions, the number, sequence and duration of mental states are unpredictably generated by the individual, resulting in complex and imbalanced fMRI data sets. Moreover, in the case of spontaneous brain activity, the mental states can not be linked to any external or internal stimulation, which makes it a highly difficult condition to decode. This study tests the classification of brain activity, acquired on 14 volunteers using fMRI, during mental imagery, a condition in which the number and duration of mental events were not externally imposed but self-generated. Application of the obtained model on rest sessions allowed classifying spontaneous brain activity linked to the task which, overall, correlated with their behavioural performance to the task.
Scopus citations®
without self-citations
2