[en] This note brings a complement to the study of genericity of functions which are nowhere analytic mainly in a measure-theoretic sense. We extend this study in Gevrey classes of functions.
Disciplines :
Mathematics
Author, co-author :
Bastin, Françoise ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Esser, Céline ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
Nicolay, Samuel ; Université de Liège - ULiège > Département de mathématique > Analyse - Analyse fonctionnelle - Ondelettes
[CC] S .Y. Chung and J. Chung, There exist no gaps between Gevrey di-erentiable and nowhere Gevrey di-erentiable, Proc. Amer. Math. Soc. 133 (2005), 859-863. (Pubitemid 40322777)
[HSY] B. R. Hunt, T. Sauer and J. A. Yorke, Prevalence: a translation-invariant \almost every" on in-nite-dimensional spaces, Bull. Amer. Math. Soc. 27 (1992), 217-238.
[R1] T. I. Ramsamujh, Nowhere analytic C1 functions, J. Math. Anal. Appl. 160 (1991), 263-266.
[R2] L. Rodino, Linear Partial Di-erential Operators in Gevrey Spaces, Word Sci., London, 1993.
[R3] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
[SZ] H. Salzmann und K. Zeller, Singularit̀aten unendlich oft di-erenzierbarer Funktionen, Math. Z. 62 (1955), 354-367.
[S] H. Shi, Prevalence of some known typical properties, Acta Math. Univ. Comeniane 70 (2001), 2, 185-192.