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Abstract

This note brings a complement to the study of genericity of func-
tions which are nowhere analytic mainly in a measure-theoretic sense.
We extend this study in Gevrey classes of functions.

1 Introduction

In what follows, C∞([0, 1]) denotes the linear space of the functions of class

C∞ on [0, 1], endowed with the sequence (pk)k∈N0 of semi-norms defined by

pk(f) = sup
0≤j≤k

sup
x∈[0,1]

|f (j)(x)|

or equivalently with the distance d defined by

d(f, g) =
∞∑
k=0

2−k
pk(f − g)

1 + pk(f − g)
.
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This space is a Fréchet space.

If f is a C∞ function on an open interval containing x0, its Taylor series

at x0 is denoted by

T (f, x0)(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n.

We say that f is analytic at x0 if T (f, x0) converges to f on an open neigh-

bourhood of x0; if this is not the case, we say that f has a singularity at x0.

A function with a singularity at each point of an interval is called nowhere

analytic on the interval. In case of a closed interval [a, b], the convergence

of the Taylor series T (f, a) and T (f, b) is only considered on the restriction

to [a, b].

If f has a singularity at x0, then either the radius of convergence of the

series is 0 (i.e. the series only converges at x0), or the series converges in

some neighbourhood of x0 but the limit does not represent f , as small as

one takes the neighbourhood of x0. Following [B4, R1], we say that x0 is a

Pringsheim singularity if the radius of convergence at x0 is 0 and a Cauchy

singularity in the other case.

In [R3], Rudin gives explicit examples of functions with a Pringsheim

singularity at each point. In [SZ], the authors obtain the property that the

set of functions in C∞([0, 1]) with a Pringsheim singularity at each point of

[0, 1] is a residual or comeager subset of C∞([0, 1]) (i.e. contains a countable

intersection of dense open sets of C∞([0, 1])). This implies that this set is

dense in C∞([0, 1]) (by Baire’s theorem) and also means that it is “generic”

in the topological sense of “genericity”. More general results were obtained

in [B1, B2, R1] and the introduction of the paper [B1] gives a wide historical

context of successive results in this direction. Let us also mention that results

on “algebraic genericity” were also obtained in [B1], where it is proved that

the set of functions in C∞([0, 1]) with a Pringsheim singularity at each point

of [0, 1] contains, except for zero, a dense linear submanifold. Concerning

Cauchy singularities, Boas ([B3]) already showed in 1935 that there is no

function with a Cauchy singularity at each point.

Another notion of “genericity” has also been introduced in order to gen-

eralize the concept of “almost everywhere” for Lebesgue measure to infinite

dimensional spaces. Following Hunt, Sauer and Yorke ([HSY]), a Borel set

B in a complete metric linear space E is said to be shy if there exists a Borel

probability measure µ on E with compact support such that µ(B + x) = 0

for any x ∈ E (it is also known that the property on the support is auto-
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matically satisfied if E is separable). More generally, any set is called shy if

it is contained in a shy Borel set. A set is prevalent if it is the complement of

a shy set and a prevalent property is a property which holds on a prevalent

set.

In this short note, we show (section 2) that the set of nowhere analytic

functions is prevalent. This result is already mentioned in [S] but in [S], one

of the arguments is the fact that the set

A(I, xI) := {f ∈ C∞([0, 1]) : T (f, xI) converges to f on I} (1)

(where I is a closed interval of [0, 1] with xI as center point) is closed in

C∞([0, 1]). But this is certainly not possible since the set of polynomials is

included in A(I, xI) and also dense in C∞([0, 1]). Concerning the prevalence

of the set of functions in C∞([0, 1]) with a Pringsheim singularity at each

point of [0, 1], as far as we know, the problem is still open.

We also examine (section 3) the set of functions which are “nowhere

Gevrey differentiable”, using the classical definition of Gevrey classes (see

the definition in the concerned section). In this case, we also obtain generic

results, both in the topological and in the prevalence points of view. Since

analytic functions are a particular class of Gevrey type functions, these

results generalize those obtained in the analytic case. However, we kept

separated sections since analytic functions are somehow more classical than

Gevrey-type ones and since the result of section 2 directly brings a comple-

ment to an already mentioned one in the literature.

2 Genericity in the prevalent sense

Let us first introduce a sufficient condition for a subset to be prevalent.

Let P be a finite dimensional subspace of the topological vector space E. If

f : Rn → P is a topological isomorphism, the measure LP defined by

LP (B) = L(f−1(B ∩ P ))

for any Borel set B of E and where L denotes the Lebesgue measure on Rn,

is called a Lebesgue measure on E supported by P . Using this definition, a

finite dimensional subspace P ⊂ E is a probe for a subset T of E if there

exists a Borel set B which contains the complement of T in E and such that

LP (B + e) = 0
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for any e ∈ E. A sufficient condition for T to be prevalent is to have a probe

for it.

Using this condition, it is straightforward to prove the following (which

simply means that a proper linear space which is a Borel set is always shy).

Remark 2.1. If A is a non-empty Borel subset of E such that the com-

plement of A is a linear subspace of E, then A is prevalent.

Proof. A probe is given by the linear span of any element a of A. Indeed,

since B = E \ A is linear, for every e ∈ E, the set

{α ∈ R : αa+ e ∈ B}

contains only one element, so has Lebesgue measure 0. 2

Proposition 2.2. The set of nowhere analytic functions on [0, 1] is a preva-

lent subset of C∞([0, 1]).

Proof. For any closed subinterval I of [0, 1] and xI the center point of

I, let A(I, xI) be the set given by (1). Since a function which is analytic

at a point is analytic in a neighbourhood of this point, the set of nowhere

analytic functions is the complement of the union of all A(I, xI) over rational

subintervals I ⊂ [0, 1]. Any countable union of shy sets is shy ([HSY]) and

therefore, it is enough to prove that every A(I, xI) is shy. Since A(I, xI) is a

proper linear subspace of C∞([0, 1]), using the remark 2.1, this will be done

if we show that it is a Borel set.

For any j, n ∈ N, let

Fn,j =
⋂
x∈I

{
f ∈ C∞([0, 1]) : |Tj(f, xI)(x)− f(x)| ≤ 1

n

}
,

where

Tj(f, xI)(x) =

j∑
k=0

f (k)(xI)

k!
(x− xI)k.

The definition of the topology of C∞([0, 1]) and the fact that only a fi-

nite number of derivatives are involved directly imply that Fn,j is closed in

C∞([0, 1]).

Using typical properties of power series, the convergence of T (f, xI) on

I is equivalent to uniform convergence on I. Hence

A(I, xI) =
⋂
n∈N

⋃
k∈N

⋂
j≥k

Fn,j,
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which shows that A(I, xI) is a countable intersection of a countable union

of closed sets, so a Borel set. 2

3 About Gevrey classes

Following [CC, R2], for a real number s > 0 and an open subset Ω of R, an

infinitely differentiable function f in Ω is said to be Gevrey differentiable

of order s at x0 ∈ Ω if there exist a compact neighbourhood I of x0 and

constants C, h > 0 such that

sup
x∈I

∣∣f (n)(x)
∣∣ ≤ Chn(n!)s, ∀n ∈ N0.

It is clear that if a function is Gevrey differentiable of order s at x0, it is

also Gevrey differentiable of any order s′ > s at x0. Remark also that the

case s = 1 corresponds to analyticity.

Let us give an example of an element f of C∞(R) such that, for any

x0 ∈ R and any s > 0, f is not Gevrey differentiable of order s at x0.

Lemma 3.1. Let λk, k ∈ N, be a sequence of strictly positive numbers such

that

λk ≥ (k + 1)(k+1)2 & λk+1 ≥ 2
k∑
j=1

λ2+k−jj , ∀k ∈ N

and let f be the function defined on R by

f(x) =
∞∑
k=1

cke
iλkx with ck = λ1−kk , k ∈ N.

This function belongs to the class C∞(R) and it is not Gevrey of order s at

x0, for any x0 ∈ R and s > 0.

Proof. Let us first remark that such a sequence can be easily constructed

(using a recurrence procedure).

Now, for every n, k ∈ N, we have ckλ
n
k = λ1+n−kk , hence the series

∞∑
k=1

ckλ
n
ke
iλkx

is uniformly and absolutely convergent on R. Thus f ∈ C∞(R).
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On the other hand, for every n ∈ N, n ≥ 2 and x ∈ R, we have

∣∣f (n)(x)
∣∣ =

∣∣∣∣∣
n−1∑
k=1

λn+1−k
k eiλkx + λne

iλnx +
∑
k>n

λn+1−k
k eiλkx

∣∣∣∣∣
≥ λn −

n−1∑
k=1

λn+1−k
k −

∑
k>n

λn+1−k
k

≥
n−1∑
k=1

λn+1−k
k −

∑
k>n

λn+1−k
k

≥ λ2n−1 −
+∞∑
j=0

1

λjj

≥ n2n2 − e ≥ 1

2
n2n2

.

Then, given strictly positive s, C, h, we have

n2n2

= nn
2

(nn)n ≥ Chn(nn)s ≥ Chn(n!)s

for n large enough. So we are done. 2

Now, in order to generalize the results about “nowhere analyticity”, we

say that a function f ∈ C∞([0, 1]) is nowhere Gevrey differentiable on [0, 1]

if f is not Gevrey differentiable of order s at x0, for any x0 ∈ [0, 1] and

s ≥ 1, where the compact neighbourhoods I are considered in [0, 1].

We are going to use the same arguments as in the analytic case to prove

the following result.

Proposition 3.2. The set of nowhere Gevrey differentiable functions is a

prevalent subset of C∞([0, 1]).

Proof. Let us first note that the definition of “nowhere Gevrey differen-

tiability” given above directly leads to the following description: the set of

nowhere Gevrey differentiable functions of C∞([0, 1]) is the complement of⋃
s∈N

⋃
I⊂[0,1]

B(s, I)

where I denotes a rational subinterval of [0, 1] and

B(s, I) =

{
f ∈ C∞([0, 1]) : ∃C, h > 0 such that sup

x∈I
|f (n)(x)| ≤ Chn(n!)s ∀n ∈ N0

}
.

Hence, since in a complete metric space countable union of shy sets is

shy ([HSY]), the result will be proved if we show that every B(s, I) is shy.
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To get this, it suffices to prove that B(s, I) is a proper linear subspace of

C∞([0, 1]) which is also a Borel set.

It is direct to see that B(s, I) is a linear subspace of C∞([0, 1]) and

strictly included in C∞([0, 1]) (using for example the previous constructive

lemma). We also have

B(s, I) =
⋃
m∈N

⋂
n∈N0

{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1 (n!)s

}
,

where {
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1 (n!)s

}
is closed in C∞([0, 1]). Hence B(s, I) is a Borel subset of C∞([0, 1]). 2

Now, let us show that the generic result also holds in the topological

sense.

Proposition 3.3. The set of nowhere Gevrey differentiable functions is a

residual subset of C∞([0, 1]).

Proof. We use the same definition as before for the set B(s, I). So, as

we already remarked previously, the set of nowhere Gevrey differentiable

functions of C∞([0, 1]) is the complement of⋃
s∈N

⋃
I⊂[0,1]

B(s, I)

where I denotes a rational subinterval of [0, 1]. We also have

B(s, I) =
⋃
m∈N

A(s, I,m)

where

A(s, I,m) =

{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ mn+1 (n!)s, ∀n ∈ N0

}
.

To conclude, it suffices then to notice that the closed set A(s, I,m) is a set

with empty interior since it is included in B(s, I) which is a proper linear

subspace of the locally convex space C∞([0, 1]). 2

This last proposition can also be obtained as a special case of the follow-

ing result of [B1]: For each infinite set M ⊂ N0 and each sequence (cn)n∈N0

of strictly positive numbers, the family{
f ∈ C∞([0, 1]) : ∃ infinitely many n ∈M with |f (n)(x)| > cn ∀x ∈ [0, 1]

}
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is a residual subset of C∞([0, 1]). Indeed, for cn = (n!)n and M = N0, this

last family is contained in the set of nowhere Gevrey differentiable functions,

since for any s ∈ N, h, C > 0, one has (n!)n > Chn(n!)s for n sufficiently

large.

4 Some additional results

Some generalizations can be obtained with similar techniques as the ones

used in the previous sections.

Proposition 4.1. For any sequence (cn)n∈N0, cn > 0 ∀n, the set

{
f ∈ C∞([0, 1]) : ∀I ⊂ [0, 1], sup

n∈N0

supx∈I |f (n)(x)|
cn

= +∞
}

(where I denotes rational subintervals) is a prevalent subset of C∞([0, 1]).

Proof. The complement of this set can be written as

⋃
I⊂[0,1]

DI with DI :=
{
f ∈ C∞([0, 1]) : sup

n∈N0

supx∈I |f (n)(x)|
cn

< +∞
}
.

Since in a complete metric space, a countable union of shy sets is shy, it

suffices then to show that DI is shy for each I. This is obtained as before:

DI is a linear space, strictly included in C∞([0, 1]) (as shows an explicit

example of [B1], Remark 2.2), and is a Borel set since it can be written as

a countable union of countable intersection of closed sets

DI =
⋃
k∈N

⋂
n∈N0

{
f ∈ C∞([0, 1]) : sup

x∈I
|f (n)(x)| ≤ kcn

}
. 2

This last proposition is a generalization of Proposition 3.2. Indeed, taking

again cn = (n!)n, we see that the set mentioned in the proposition above is

contained in the set of nowhere Gevrey differentiable functions.

One can also make some remarks about classes of type C{Mn} (in relation

with quasi-analyticity, [R3], Chapter 19): if (Mn)n∈N0 is a sequence of strictly

positive numbers and I a subinterval of [0, 1], let us denote by C{Mn}(I) the

linear space{
f ∈ C∞([0, 1]) : ∃C, h > 0 such that sup

x∈I
|f (n)(x)| ≤ ChnMn ∀n ∈ N0

}
.
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In fact, with Mn = (n!)s, we have B(s, I) = C{Mn}(I). So, with the same

computations as those used when dealing with B(s, I), one gets the fact

that C{Mn}(I) is shy in C∞([0, 1]). As a consequence, the set of functions

of C∞([0, 1]) which are “nowhere in C{Mn}” (that is to say, which do not

belong to C{Mn}(I), for any interval I) is prevalent in C∞([0, 1]).
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