[en] We are celebrating this year 20 years of research dedicated to the transcription factor NF-kB. From 1986, the year of its initial identification as a DNA-binding activity for the enhancer of the immunoglobulin k light-chain in activated B cells by David Baltimore and colleagues [1] to 2006, almost 20000 papers related to this transcription factor were published, which means three reports per day. This amazing amount of data generated over the years and throughout the world reflects the critical roles played by NF-kB in biology. It is indeed increasingly difficult to find circumstances where NF-kB is not involved at one point. One reason is due to the amazing amount of signals that can activate NF-kB. They include bacterial, viral and fungal products but also inflammatory cytokines, oxidative stress and therapeutically used drugs (as reviewed by Y. Habraken and J. Piette in this issue) and are listed in Tom Gilmore’s website (www.nf-kb.org) (Boston University). Another reason is due to the functional kB sites found in about one hundred genes [2]. These numerous NF-kB target genes play critical roles in cell survival and proliferation, as well as in innate and adaptive immunity, which reflects the essential role of this transcription factor in physiology and diseases.
Centre/Unité de recherche :
GIGA‐R - Giga‐Research - ULiège
Disciplines :
Pharmacie, pharmacologie & toxicologie
Auteur, co-auteur :
Chariot, Alain ; Université de Liège - ULiège > Département de pharmacie > Chimie médicale
Sen R., and Baltimore D. Multiple nuclear factors interact with the immunoglobulin enhancer sequences. Cell 46 (1986) 705-716
Hoffmann A., and Baltimore D. Circuitry of nuclear factor κB signalling. Immunol Rev 210 (2006) 171-186
Sen R., and Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein Nf-kappa B by a posttranslational mechanism. Cell 47 (1986) 921-928
Lenardo M.J., Fan C.M., Maniatis T., and Baltimore D. The involvement of NF-kappa B in beta-interferon gene regulation reveals its role as widely inducible mediator of signal transduction. Cell 57 (1989) 287-294
Baeuerle P.A., and Baltimore D. Activation of DNA-binding activity in an apparently cytoplasmic precursor of the NF-kappa B transcription factor. Cell 53 (1988) 211-217
Baeuerle P.A., and Baltimore D. I kappa B: a specific inhibitor of the NF-kappa B transcription factor. Science 242 (1988) 540-546
Baeuerle P.A., and Baltimore D. A 65-kappaD subunit of active NF-kappaB is required for inhibition of NF-kappaB by I kappaB. Genes Dev 3 (1989) 1689-1698
Ghosh S., Gifford A.M., Riviere L.R., Tempst P., Nolan G.P., and Baltimore D. Cloning of the p50 DNA binding subunit of NF-kappa B: homology to rel and dorsal. Cell 62 (1990) 1019-1029
Bours V., Villalobos J., Burd P.R., Kelly K., and Siebenlist U. Cloning of a mitogen-inducible gene encoding a kappa B DNA-binding protein with homology to the rel oncogene and to cell-cycle motifs. Nature 348 (1990) 76-80
Kieran M., Blank V., Logeat F., Vandekerckhove J., Lottspeich F., Le Bail O., et al. The DNA binding subunit of NF-kappa B is identical to factor KBF1 and homologous to the rel oncogene product. Cell 62 (1990) 1007-1018
Bours V., Burd P.R., Brown K., Villalobos J., Park S., Ryseck R.P., et al. A novel mitogen-inducible gene product related to p50/p105-NF-kappa B participates in transactivation through a kappa B site. Mol Cell Biol 12 (1992) 685-695
Ryseck R.P., Bull P., Takamiya M., Bours V., Siebenlist U., Dobrzanski P., et al. RelB, a new Rel family transcription activator that can interact with p50-NF-kappa B. Mol Cell Biol 12 (1992) 674-684
Beg A.A., Sha W.C., Bronson R.T., Ghosh S., and Baltimore D. Embryonic lethality and liver degeneration in mice lacking the RelA component of NF-kappa B. Nature 376 (1995) 167-170
Beg A.A., and Baltimore D. An essential role for NF-kappaB in preventing TNF-alpha-induced cell death. Science 274 (1996) 782-784
Wang C.Y., Mayo M.W., and Baldwin Jr. A.S. TNF- and cancer therapy-induced apoptosis: potentiation by inhibition of NF-kappaB. Science 274 (1996) 784-787
Van Antwerp D.J., Martin S.J., Kafri T., Green D.R., and Verma I.M. Suppression of TNF-alpha-induced apoptosis by NF-kappaB. Science 274 (1996) 787-789
Neri A., Chang C.C., Lombardi L., Salina M., Corradini P., Maiolo A.T., et al. B cell lymphoma-associated chromosomal translocation involves candidate oncogene lyt-10, homologous to NF-kappa B p50. Cell 67 (1991) 1075-1087
McKeithan T.W., Rowley J.D., Shows T.B., and Diaz M.O. Cloning of the chromosome translocation breakpoint junction of the t(14;19) in chronic lymphocytic leukaemia. Proc Natl Acad Sci USA 84 (1987) 9257-9260
De Smaele E., Zazzeroni F., Papa S., Nguyen D.U., Jin R., Jones J., et al. Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414 (2001) 308-313
Traenckner E.B., Wilk S., and Baeuerle P.A. A proteasome inhibitor prevents activation of NF-kappa B and stabilizes a newly phosphorylated form of I kappa B-alpha that is still bound to NF-kappa B. EMBO J 13 (1994) 5433-5441
Brown K., Gerstberger S., Carlson L., Franzoso G., and Siebenlist U. Control of I kappa B-alpha proteolysis by site-specific, signal-induced phosphorylation. Science 267 (1995) 1485-1488
DiDonato J.A., Hayakawa M., Rothwarf D.M., Zandi E., and Karin M. A cytokine-responsive IkappaB kinase that activates the transcription factor NF-kappaB. Nature 388 (1997) 548-554
Zandi E., Rothwarf D.M., Delhase M., Hayakawa M., and Karin M. The IkappaB kinase complex (IKK) contains two kinase subunits, IKKalpha and IKKbeta, necessary for IkappaB phosphorylation and NF-kappaB activation. Cell 91 (1997) 243-252
Regnier C.H., Song H.Y., Gao X., Goeddel D.V., Cao Z., and Rothe M. Identification and characterization of an IkappaB kinase. Cell 90 (1997) 373-383
Rothwarf D.M., Zandi E., Natoli G., and Karin M. IKK-gamma is an essential regulatory subunit of the IkappaB kinase complex. Nature 395 (1998) 297-300
Yamaoka S., Courtois G., Bessia C., Whiteside S.T., Weil R., Agou F., et al. Complementation cloning of NEMO, a component of the IkappaB kinase complex essential for NF-kappaB activation. Cell 93 (1998) 1231-1240
Dejardin E., Droin N.M., Delhase M., Haas E., Cao Y., Makris M., et al. The lymphotoxin-beta receptor induces different patterns of gene expression via two NF-kappaB pathways. Immunity 17 (2002) 525-535
Claudio E., Brown K., Park S., Wang H., and Siebenlist U. BAFF-induced NEMO-independent processing of NF-kappa B2 in maturing B cells. Nat Immunol 3 (2002) 958-965
Coope H.J., Atkinson P.G., Huhse B., Belich M., Janzen J., Holman M.J., et al. CD40 regulates the processing of NF-kappaB2 p100 to p52. EMBO J 21 (2002) 5375-5385
Kayagaki N., Yan M., Seshasayee D., Wang H., Lee W., French D.M., et al. BAFF/BLyS receptor 3 binds the B cell survival factor BAFF ligand through a discrete surface loop and promotes processing of NF-kappaB2. Immunity 17 (2002) 515-524
Chen Z.J., Parent L., and Maniatis T. Site-specific phosphorylation of IkappaBalpha by a novel ubiquitination-dependent protein kinase activity. Cell 84 (1996) 853-862
Wang C., Deng L., Hong M., Akkaraju G.R., Inoue J., and Chen Z.J. TAK1 is a ubiquitin-dependent kinase of MKK and IKK. Nature 412 (2001) 346-351
Zhou H., Wertz I., O'Rourke K., Ultsch M., Seshagiri S., Eby M., et al. Bcl10 activates the NF-kappaB pathway through ubiquitination of NEMO. Nature 427 (2004) 167-171
Zhong H., SuYang H., Erdjument-Bromage H., Tempst P., and Ghosh S. The transcriptional activity of NF-kappaB is regulated by the IkappaB-associated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89 (1997) 413-424
Vermeulen V., De Wilde G., Van Damme P., Vanden Berghe W., and Haegeman G. Transcriptional activation of the NF-κB p65 subunit by mitogen- and stress-activated protein kinase-1 (MSK-1). EMBO J 22 (2003) 1313-1324
Chen L.F., Fischle W., Verdin E., and Greene W.C. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science 293 (2001) 1653-1657
Anest V., Hanson J.L., Cogswell P.C., Steinbrecher K.A., Strahl B.D., and Baldwin A.S. A nucleosomal function for IkappaB kinase-alpha in NF-kappaB-dependent gene expression. Nature 423 (2003) 659-663
Yamamoto Y., Verma U.N., Prajapati S., Kwak Y.T., and Gaynor R.B. Histone H3 phosphorylation by IKK-alpha is critical for cytokine-induced gene expression. Nature 423 (2003) 655-659
Bergmann A. IKK signalling: not Just NF-kappaB. Curr Biol 16 (2006) R588-R590
Smahi A., Courtois G., Vabres P., Yamaoka S., Heuertz S., Munnich A., et al. Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The International Incontinentia Pigmenti (IP) Consortium. Nature 405 (2000) 466-472
Pikarsky E., Porat R.M., Stein I., Abramovitch R., Amit S., Kasem S., et al. NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431 (2004) 461-466
Greten F.R., Eckmann L., Greten T.F., Park J.M., Li Z.W., Egan L.J., et al. IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118 (2004) 285-296