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Wearecelebratingthisyear20yearsofresearchdedicatedtothe

transcription factor NF-kB. From 1986, the year of its initial

identification as a DNA-binding activity for the enhancer of the

immunoglobulin k light-chain in activated B cells by Sen and

Baltimore [1] to 2006, almost 20,000 papers related to this

transcription factor were published, which means three reports

per day. This amazing amount of data generated over the years

andthroughout the worldreflects the critical rolesplayedbyNF-

kB in biology. It is indeed increasingly difficult to find

circumstances where NF-kB is not involved at one point. One

reason is due to the amazing amount of signals that can activate

NF-kB. They include bacterial, viral and fungal products but also

inflammatory cytokines, oxidative stress and therapeutically

useddrugs (asreviewedbyY.HabrakenandJ.Piette inthis issue)

and are listed in Tom Gilmore’s website (http://www.nf-kb.org)

(Boston University). Another reason is due to the functional kB

sites found in about 100 genes [2]. These numerous NF-kB target

genes play critical roles in cell survival and proliferation, as well

as in innate and adaptive immunity, which reflects the essential

role of this transcription factor in physiology and diseases.

NF-kB is a double-edged sword. Indeed, while this transcrip-

tionfactor is essential for a proper immune responseto a variety

of environmental stress conditions, enhanced NF-kB activity

causes chronic inflammation and cancer. Moreover, diseases as

diverse as acute and chronic neurodegenerative disorders

(reviewed by S. Mémet in this issue), atherosclerosis, among

many others are also characterized by deregulated NF-kB

activation. NF-kB is thus seen as a promising target for therapy

in inflammatory diseases and cancer (as reviewed by S. Olivier

and colleagues in this issue). Equally importantly, impaired NF-

kB activation has also been linked to several human diseases,

such as incontinenta pigmenti for example, as reviewed by G.

Courtois in this issue. Therefore, NF-kB activation has to be

tightly regulated, as evidenced by the 20 years of research

dedicated to this transcription factor.
1. An historical perspective

The story began in 1986 with the identification of NF-kB as a

transcription factor binding the enhancer of the immunoglo-
bulin k light-chain in activated B cells [1,2]. Subsequent

studies demonstrated that NF-kB, rather than a B-cell specific

protein, is actually a pleiotropic factor and the prototype of a

latent cytoplasmic transcription factor whose activation is

largely regulated via control of its nuclear translocation [3,4].

Indeed, NF-kB is sequestered in the cytoplasm in most

unstimulated cells through binding to inhibitory proteins,

collectively referred to as IkBs [5,6]. Upon stimulation by a

variety of signals, IkBs, the prototype of which is IkBa, are

phosphorylated and subsequently degraded through the

proteasome pathway, and the activated, ‘‘free’’ NF-kB moves

into the nucleus to regulate gene transcription. NF-kB

proteins include several members (p50, p52, p65, RelB and

cRel) and their cDNAs were cloned in 1989 and the following

years [7–12].

Definitive evidence for NF-kB acting as a key player in the

immune response came from the analysis of mice deficient for

each NF-kB proteins and whose phenotypes were recently

summarized [2]. Interestingly and because p65 deficiency

causes embryonic lethality due to massive apoptosis of the

fetal liver [13], a pro-survival role of NF-kB was subsequently

reported [14–16]. It became clear indeed that NF-kB activation

induces cell survival in lymphocytes and many other cell types

through transcriptional induction of specific anti-apoptotic

genes. This finding was of great importance, as chromosomal

translocations targeting genes coding for inhibitory IkB

proteins were identified in some haematological malignancies

[17,18]. Such translocations cause constitutive NF-kB activity

and it is still believed today that these molecular alterations

are the causal event for enhanced proliferative and survival

abilities of the mutated cells as reviewed by A. Keutgens and

colleagues in this issue. What is true for haematological

disorders turned out to be also true for solid tumors, as

reviewed by F. Pacifico and A. Leonardi in this issue. The pro-

survival role of NF-kB also implies a TNFa-mediated attenua-

tion of JNK activation through multiple mechanisms [19], as

reviewed by A. Wullaert and colleagues in this issue.

The early demonstration that NF-kB activation does not

require protein synthesis but rather relies on the signal-

induced phosphorylation of the IkBs on specific residues

[20,21] initiated an intense research activity dedicated to the
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characterization of the signalling pathways ultimately causing

phosphorylation and subsequent degradation of these inhi-

bitory molecules. A first breakthrough came with the

identification of the IKK complex that includes the catalytic

subunits IKKa and IKKb as well as the regulatory subunit,

NEMO/IKKg [22–26]. This pathway referred to as the ‘‘cano-

nical’’ pathway is triggered by pro-inflammatory cytokines

and is mainly involved in innate immunity. Among these

stimuli are the TLR ligands, as reviewed by Sarah Doyle and

Luke O’Neill in this special issue. The next breakthrough

occurred with the identification of the ‘‘alternative’’ or ‘‘non-

canonical’’ pathway. This latter pathway is triggered by

other stimuli (lymphotoxin b, . . .), does not involve NEMO/

IKKg and ultimately regulates a distinct subset of target genes,

namely genes involved in secondary lymphoid organ devel-

opment and in adaptive immunity [27–30], as reviewed by E.

Dejardin in this issue. Both pathways rely on sequentially

activated kinases, which ultimately target an IkB protein

for phosphorylation. Importantly, these pathways do not

exclusively involve protein phosphorylation but also non-

degradative polyubiquitination of numerous scaffold proteins

[31–33].

NF-kB proteins themselves are also targeted by a variety of

kinases and this mechanism is required for optimal gene

activation [34,35]. Other modifications such as acetylation

[36] have been described too and it is now well established

that the so-called epigenetic settings and the chromatin

structure are both critical for the regulation of NF-kB-

mediated gene transcription as reviewed by W. Vanden

Berghe and colleagues in this special issue. More recently, a

nuclear role for IKKa was reported [37,38], as reviewed by G.

Gloire and colleagues in this issue and this finding reflects the

ability of the IKK complex to phosphorylate multiple

substrates, besides IkBa in the cytoplasm and also in the

nucleus. Very recent reports actually demonstrated that the

IKK complex harbours NF-kB-independent functions by

targeting newly discovered substrates [39] and it is likely

that the next months will bring substantial amount of data

illustrating this fact.

The critical role played by a family of proteins is often

exemplified by the diseases caused by their deregulation.

This statement is certainly true for NF-kB and for the

multiple molecules involved in the NF-kB-activating

signalling pathways. In this context, the report demonstrat-

ing that incontinenta pigmenti (IP), a human genetic

disease, is caused by inherited mutations of the NEMO-

encoding gene [40] was the first demonstration that

impaired NF-kB signalling is also severely detrimental.

Moreover, the fact that NF-kB is the molecular link between

chronic inflammation and cancer [41,42] actually demon-

strates that NF-kB can be linked to human diseases even in

the absence of acquired mutations of the NF-kB/IkB-

encoding genes.

In conclusion, and despite the feeling sometimes shared by

the ‘‘NF-kB scientists’’ that ‘‘we are almost reaching the end of

the story’’, the still increasing scientific literature dedicated to

this transcription factor actually proves that this is not the

case. Let’s ask for 20 more years then. . .
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