[en] Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this indirect effect on the cellular environment, these MT-MMPs degrade extracellular matrix proteins, and their overproduction is associated with tumor growth. We have solved the structure of the catalytic domain (cd) of MT3-MMP/MMP-16 in complex with the hydroxamic acid inhibitor batimastat. CdMT3-MMP exhibits a classical MMP-fold with similarity to MT1-MMP. Nevertheless, it also shows unique properties such as a modified MT-specific loop and a closed S1' specificity pocket, which might help to design specific inhibitors. Some MT-MMP-specific features, derived from the crystal structures of MT-1-MMP determined previously and MT3-MMP, and revealed in recent mutagenesis experiments, explain the impaired interaction of the MT-MMPs with TIMP-1. Docking experiments with proMMP-2 show some exposed loops including the MT-loop of cdMT3-MMP involved in the interaction with the proMMP-2 prodomain in the activation encounter complex. This model might help to understand the experimentally proven importance of the MT-loop for the activation of proMMP-2. (C) 2003 Elsevier Ltd. All rights reserved.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lang, R.
Braun, M.
Sounni, Nor Eddine ; Université de Liège - ULiège > Département des sciences cliniques > Labo de biologie des tumeurs et du développement
Noël, Agnès ; Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biologie cellulaire et moléculaire appliquée à l'homme
Frankenne, Francis
Foidart, Jean-Michel ; Université de Liège - ULiège > Département des sciences cliniques > Gynécologie - Obstétrique
Bode, W.
Maskos, K.
Language :
English
Title :
Crystal structure of the catalytic domain of MMP-16/MT3-MMP: Characterization of MT-MMP specific features
scite shows how a scientific paper has been cited by providing the context of the citation, a classification describing whether it supports, mentions, or contrasts the cited claim, and a label indicating in which section the citation was made.
Bibliography
McQuibban G.A., Gong J.H., Tam E.M., McCulloch C.A., Clark-Lewis I., Overall C.M. Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 289:2000;1202-1206.
Noel A., Gilles C., Bajou K., Devy L., Kebers F., Lewalle J.M., et al. Emerging roles for proteinases in cancer. Invasion Metastasis. 17:1997;221-239.
Nagase H., Woessner J.F. Jr. Matrix metalloproteinases. J. Biol. Chem. 274:1999;21491-21494.
Stetler-Stevenson W.G. Matrix metalloproteinases in angiogenesis: a moving target for therapeutic intervention. J. Clin. Invest. 103:1999;1237-1241.
Sternlicht M.D., Werb Z. How matrix metalloproteinases regulate cell behavior. Annu. Rev. Cell. Dev. Biol. 17:2001;463-516.
Pei D. CA-MMP: a matrix metalloproteinase with a novel cysteine array, but without the classic cysteine switch. FEBS Letters. 457:1999;262-270.
Velasco G., Pendas A.M., Fueyo A., Knauper V., Murphy G., Lopez-Otin C. Cloning and characterization of human MMP-23, a new matrix metalloproteinase predominantly expressed in reproductive tissues and lacking conserved domains in other family members. J. Biol. Chem. 274:1999;4570-4576.
Itoh Y., Kajita M., Kinoh H., Mori H., Okada A., Seiki M. Membrane type 4 matrix metalloproteinase (MT4-MMP, MMP-17) is a glycosylphosphatidylinositol- anchored proteinase. J. Biol. Chem. 274:1999;34260-34266.
Kojima S., Itoh Y., Matsumoto S., Masuho Y., Seiki M. Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosyl-phosphatidyl inositol (GPI)-anchored MMP. FEBS Letters. 480:2000;142-146.
Sato H., Takino T., Okada Y., Cao J., Shinagawa A., Yamamoto E., Seiki M. A matrix metalloproteinase expressed on the surface of invasive tumour cells. Nature. 370:1994;61-65.
Overall C. Molecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol. Biotechnol. 22:2002;51-86.
Deryugina E.I., Bourdon M.A., Jungwirth K., Smith J.W., Strongin A.Y. Functional activation of integrin alpha V beta 3 in tumor cells expressing membrane-type 1 matrix metalloproteinase. Int. J. Cancer. 86:2000;15-23.
Kajita M., Itoh Y., Chiba T., Mori H., Okada A., Kinoh H., Seiki M. Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J. Cell Biol. 153:2001;893-904.
Strongin A.Y., Collier I., Bannikov G., Marmer B.L., Grant G.A., Goldberg G.I. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J. Biol. Chem. 270:1995;5331-5338.
Kinoshita T., Sato H., Takino T., Itoh M., Akizawa T., Seiki M. Processing of a precursor of 72-kilodalton type IV collagenase/gelatinase A by a recombinant membrane-type 1 matrix metalloproteinase. Cancer Res. 56:1996;2535-2538.
Will H., Atkinson S.J., Butler G.S., Smith B., Murphy G. The soluble catalytic domain of membrane type 1 matrix metalloproteinase cleaves the propeptide of progelatinase A and initiates autoproteolytic activation. Regulation by TIMP-2 and TIMP-3. J. Biol. Chem. 271:1996;17119-17123.
Butler G.S., Hutton M., Wattam B.A., Williamson R.A., Knauper V., Willenbrock F., Murphy G. The specificity of TIMP-2 for matrix metalloproteinases can be modified by single amino acid mutations. J. Biol. Chem. 274:1999;20391-20396.
Butler G., Will H., Atkinson S.J., Murphy G. Membrane-type-2 matrix metalloproteinase can initiate the processing of progelatinase A and is regulated by the tissue inhibitors of metalloproteinases. Eur. J. Biochem. 244:1997;653-657.
Kolkenbrock H., Hecker-Kia A., Orgel D., Ulbrich N., Will H. Activation of progelatinase A and progelatinase A/TIMP-2 complex by membrane type 2-matrix metalloproteinase. Biol. Chem. 378:1997;71-76.
Llano E., Pendas A.M., Freije J.P., Nakano A., Knauper V., Murphy G., Lopez-Otin C. Identification and characterization of human MT5-MMP, a new membrane-bound activator of progelatinase A overexpressed in brain tumors. Cancer Res. 59:1999;2570-2576.
Takino T., Sato H., Shinagawa A., Seiki M. Identification of the second membrane-type matrix metalloproteinase (MT-MMP-2) gene from a human placenta cDNA library. MT-MMPs form a unique membrane-type subclass in the MMP family. J. Biol. Chem. 270:1995;23013-23020.
Pei D. Identification and characterization of the fifth membrane-type matrix metalloproteinase MT5-MMP. J. Biol. Chem. 274:1999;8925-8932.
Morrison C.J., Butler G.S., Bigg H.F., Roberts C.R., Soloway P.D., Overall C.M. Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J. Biol. Chem. 276:2001;47402-474010.
Fernandez-Catalan C., Bode W., Huber R., Turk D., Calvete J.J., Lichte A., et al. Crystal structure of the complex formed by the membrane type 1-matrix metalloproteinase with the tissue inhibitor of metalloproteinases-2, the soluble progelatinase A receptor. EMBO J. 17:1998;5238-5248.
English W.R., Holtz B., Vogt G., Knauper V., Murphy G. Characterization of the role of the MT-loop: an eight-amino acid insertion specific to progelatinase A (MMP2) activating membrane-type matrix metalloproteinases. J. Biol. Chem. 276:2001;42018-42026.
English W.R., Puente X.S., Freije J.M., Knauper V., Amour A., Merryweather A., et al. Membrane type 4 matrix metalloproteinase (MMP17) has tumor necrosis factor-alpha convertase activity but does not activate pro-MMP2. J. Biol. Chem. 275:2000;14046-14055.
Velasco G., Cal S., Merlos-Suarez A., Ferrando A.A., Alvarez S., Nakano A., et al. Human MT6-matrix metalloproteinase: identification, progelatinase A activation, and expression in brain tumors. Cancer Res. 60:2000;877-882.
Kojima S., Itoh Y., Matsumoto S., Masuho Y., Seiki M. Membrane-type 6 matrix metalloproteinase (MT6-MMP, MMP-25) is the second glycosyl-phosphatidyl inositol (GPI)-anchored MMP. FEBS Letters. 480:2000;142-146.
Zhou Z., Apte S.S., Soininen R., Cao R., Baaklini G.Y., Rauser R.W., et al. Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl Acad. Sci. USA. 97:2000;4052-4057.
Holmbeck K., Bianco P., Caterina J., Yamada S., Kromer M., Kuznetsov S.A., et al. MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 99:1999;81-92.
Yoshiyama Y., Sato H., Seiki M., Shinagawa A., Takahashi M., Yamada T. Expression of the membrane-type 3 matrix metalloproteinase (MT3-MMP) in human brain tissues. Acta Neuropathol. (Berl.). 96:1998;347-350.
Nakada M., Nakamura H., Ikeda E., Fujimoto N., Yamashita J., Sato H., et al. Expression and tissue localization of membrane-type 1, 2, and 3 matrix metalloproteinases in human astrocytic tumors. Am. J. Pathol. 154:1999;417-428.
Kitagawa Y., Kunimi K., Uchibayashi T., Sato H., Namiki M. Expression of messenger RNAs for membrane-type 1, 2, and 3 matrix metalloproteinases in human renal cell carcinomas. J. Urol. 162:1999;905-909.
Ueno H., Nakamura H., Inoue M., Imai K., Noguchi M., Sato H., et al. Expression and tissue localization of membrane-types 1, 2, and 3 matrix metalloproteinases in human invasive breast carcinomas. Cancer Res. 57:1997;2055-2060.
Iida J., Pei D., Kang T., Simpson M.A., Herlyn M., Furcht L.T., McCarthy J.B. Melanoma chondroitin sulfate proteoglycan regulates matrix metalloprotease-dependent human melanoma invasion into type I collagen. J. Biol. Chem. 276:2001;18786-18794.
Kang T., Yi J., Yang W., Wang X., Jiang A., Pei D. Functional characterization of MT3-MMP in transfected MDCK cells: progelatinase A activation and tubulogenesis in 3-D collagen lattice. FASEB J. 14:2000;2559-2568.
Shofuda K., Yasumitsu H., Nishihashi A., Miki K., Miyazaki K. Expression of three membrane-type matrix metalloproteinases (MT-MMPs) in rat vascular smooth muscle cells and characterization of MT3-MMPs with and without transmembrane domain. J. Biol. Chem. 272:1997;9749-9754.
Matsumoto S., Katoh M., Saito S., Watanabe T., Masuho Y. Identification of soluble type of membrane-type matrix metalloproteinase-3 formed by alternatively spliced mRNA. Biochim. Biophys. Acta. 1354:1997;159-170.
Shimada T., Nakamura H., Ohuchi E., Fujii Y., Murakami Y., Sato H., et al. Characterization of a truncated recombinant form of human membrane type 3 matrix metalloproteinase. Eur. J. Biochem. 262:1999;907-914.
Reinemer P., Grams F., Huber R., Kleine T., Schnierer S., Pieper M., et al. Structural implications for the role of the N terminus in the, superactivation' of collagenases. A crystallographic study. FEBS Letters. 338:1994;227-233.
Chung L., Shimakawa K., Dinakarpandian D., Grams F., Firlds G.B., Nagase H. Identification of the (183)RWTNNFREY(191) region as a critical segment of matrix metalloprotease 1 for the expression of collagenolytic activity. J. Biol. Chem. 275:2000;29610-29617.
Bode W., Gomis-Ruth F.X., Stocker W. Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the metzincins. FEBS Letters. 331:1993;134-140.
Bode W., Reinemer P., Huber R., Kleine T., Schnierer S., Tschesche H. The X-ray crystal structure of the catalytic domain of human neutrophil collagenase inhibited by a substrate analogue reveals the essentials for catalysis and specificity. EMBO J. 13:1994;1263-1269.
Lovejoy B., Cleasby A., Hassell A.M., Longley K., Luther M.A., Weigl D., et al. Structure of the catalytic domain of fibroblast collagenase complexed with an inhibitor. Science. 263:1994;375-377.
Kridel S.J., Sawai H., Ratnikov B.I., Chan E.I., Li W., Godzik A., Strongin A.Y., et al. A unique substrate binding mode discriminates membrane type-1 matrix metalloproteinase from other matrix metalloproteinases. J. Biol. Chem. 277:2002;23788-23793.
Lovejoy B., Welch A.R., Carr S., Luong C., Broka C., Hendricks R.T., et al. Crystal structures of MMP-1 and -13 reveal the structural basis for selectivity of collagenase inhibitors. Nat. Struct. Biol. 6:1999;217-221.
Grams F., Crimmin M., Hinnes L., Huxley P., Pieper M., Tschesche H., Bode W. Structure determination and analysis of human neutrophil collagenase complexed with a hydroxamate inhibitor. Biochemistry. 34:1995;14012-14020.
Tanaka M., Sato H., Takino T., Iwata K., Inoue M., Seiki M. Isolation of a mouse MT2-MMP gene from a lung cDNA library and identification of its product. FEBS Letters. 402:1997;219-222.
Miyamori H., Takino T., Seiki M., Sato H. Human membrane type-2 matrix metalloproteinase is defective in cell-associated activation of progelatinase A. Biochem. Biophys. Res. Commun. 267:2000;796-800.
Morgunova E., Tuuttila A., Bergmann U., Isupov M., Lindqvist Y., Schneider G., Tryggvason K. Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. Science. 284:1999;1667-1670.
Strongin A.Y., Marmer B.L., Grant G.A., Goldberg G.I. Plasma membrane-dependent activation of the 72-kDa type IV collagenase is prevented by complex formation with TIMP-2. J. Biol. Chem. 268:1993;14033-14039.
Atkinson S.J., Crabbe T., Cowell S., Ward R.V., Butler M.J., Sato H., et al. Intermolecular autolytic cleavage can contribute to the activation of progelatinase A by cell membranes. J. Biol. Chem. 270:1995;30479-30485.
Morgunova E., Tuuttila A., Bergmann U., Tryggvason K. Structural insights into the complex formation of latent matrix metalloproteinase 2 with tissue inhibitor of metalloproteinase 2. Proc. Natl Acad. Sci. USA. 99:2002;7414-7419.
Grams F., Reinemer P., Powers J.C., Kleine T., Pieper M., Tschesche H., Huber R., Bode W. X-ray structures of human neutrophil collagenase complexed with peptide hydroxamate and peptide thiol inhibitors. Implications for substrate binding and rational drug design. Eur. J. Biochem. 228:1995;830-841.
Bode W., Maskos K. Structural basis of the matrix metalloproteinases and their physiological inhibitors, the tissue inhibitors of metalloproteinases. Biol. Chem. 384:2003;863-872.
Lang, R. (2001). Röntgenstrukturanalyse der katalytischen Domänen von Makrophagen Elastase (MMP-12), MT3-MMP (MMP-16) und dem Komplex aus Kollagenase-3 (MMP-13) mit TIMP-2. Dissertation, München.
Knauper V., Bailey L., Worley J.R., Soloway P., Patterson M.L., Murphy G. Cellular activation of proMMP-13 by MT1-MMP depends on the C-terminal domain of MMP-13. FEBS Letters. 532:2002;127-130.
Gomis-Ruth F.X., Maskos K., Betz M., Bergner A., Huber R., Suzuki K., et al. Mechanism of inhibition of the human matrix metalloproteinase stromelysin-1 by TIMP-1. Nature. 389:1997;77-81.
Lee M.H., Rapti M., Murphy G. Unveiling the surface epitopes that render tissue inhibitor of metalloproteinase (TIMP)-1 inactive against membrane type 1-matrix metalloproteinase (MT1-MMP). J. Biol. Chem. 278:2003;40224-40230.
L'Hoir C., Renard A., Martial J.A. Expression in Escherichia coli of two mutated genes encoding the cholera toxin B subunit. Gene. 89:1990;47-52.
Noel A., Santavicca M., Stoll I., L'Hoir C., Staub A., Murphy G., et al. Identification of structural determinants controlling human and mouse stromelysin-3 proteolytic activities. J. Biol. Chem. 270:1995;22866-22872.
Amour A., Slocombe P.M., Webster A., Butler M., Knight C.G., Smith B.J., et al. TNF-alpha converting enzyme (TACE) is inhibited by TIMP-3. FEBS Letters. 435:1998;39-44.
Otwinowski Z., Minor W. Processing of X-ray diffraction data collected in oscillations mode. Methods Enzymol. 276:1997;307-326.
Navaza J. AMoRe: an automated package for molecular replacement. Acta Crystallog. A50:1994;157-163.
Brünger A.T. X-PLOR Version 3.1. A system for X-ray crystallography and NMR. 1992;Yale University Press, New Haven, CT.
Engh R.A., Huber R. Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallog. sect. D. 4:(1):1991;392-400.
Brünger A.T., Adams P.D., Clore G.M., Delano W.L., Gros P., Grosse-Kunstleve R.W., et al. Crystallography and NMR systems (CNS): a new software system for macromolecular structure determination. Acta Crystallog. sect. D. 54:1998;905-921.
Jones T.A., Zou J.Y., Cowan S.W., Kjelgaard M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallog. A47:1991;110-119.
Turk, D. (1992). Weiterentwicklung eines Programms für Molekülgraphik und Elektronendichte-Manipulation und seine Anwendung auf verschiedene Protein-Strukturaufklärungen. Ph.D. thesis, München.
Murshudov G.N., Lebedev A., Vagin A.A., Wilson K.S., Dodson E.J. Efficient anisotropic refinement of macromolecular structures using FFT. Acta Crystallog. sect. D. 55:1999;247-255.
Laskowski R.A., MacArthur M.W., Moss D.S., Thornton J.M. PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Crystallog. 26:1993;283-291.
Esnouf R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15:1997;132-134.
Merritt E.A., Murphy M.E.P. Raster3D version 2.0. A program for photorealistic molecular graphics. Acta Crystallog. sect. D. 50:1994;869-873.
Guex N., Peitsch M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis. 18:1997;2714-2723.
Similar publications
Sorry the service is unavailable at the moment. Please try again later.
This website uses cookies to improve user experience. Read more
Save & Close
Accept all
Decline all
Show detailsHide details
Cookie declaration
About cookies
Strictly necessary
Performance
Strictly necessary cookies allow core website functionality such as user login and account management. The website cannot be used properly without strictly necessary cookies.
This cookie is used by Cookie-Script.com service to remember visitor cookie consent preferences. It is necessary for Cookie-Script.com cookie banner to work properly.
Performance cookies are used to see how visitors use the website, eg. analytics cookies. Those cookies cannot be used to directly identify a certain visitor.
Used to store the attribution information, the referrer initially used to visit the website
Cookies are small text files that are placed on your computer by websites that you visit. Websites use cookies to help users navigate efficiently and perform certain functions. Cookies that are required for the website to operate properly are allowed to be set without your permission. All other cookies need to be approved before they can be set in the browser.
You can change your consent to cookie usage at any time on our Privacy Policy page.