Crystal Structure of the Catalytic Domain of MMP-16/ MT3-MMP: Characterization of MT-MMP Specific Features

R. Lang¹, M. Braun¹, N. E. Sounni², A. Noel², F. Frankenne² J.-M. Foidart², W. Bode¹ and K. Maskos¹

¹Max-Planck-Institut für Biochemie, Abteilung Strukturforschung Am Klopferspitz 18a, D-82152 Martinsried-bei-münchen
²Germany Laboratory of Tumor and Development Biology University of Liege, CHU Liege, Belgium

Abstract
Membrane-type matrix metalloproteinases (MT-MMPs) have attracted strong attention, because four of them can activate a key player in the tumor scenario, proMMP-2/progelatinase A. In addition to this indirect effect on the cellular environment, these MT-MMPs degrade extracellular matrix proteins, and their overproduction is associated with tumor growth. We have solved the structure of the catalytic domain (cd) of MT3-MMP/MMP-16 in complex with the hydroxamic acid inhibitor batimastat. CdMT3-MMP exhibits a classical MMP-fold with similarity to MT1-MMP Nevertheless, it also shows unique properties such as a modified MT-specific loop and a closed S1’ specificity pocket, which might help to design specific inhibitors. Some MT-MMP-specific features, derived from the crystal structures of MT-1-MMP determined previously and MT3-MMP, and revealed in recent mutagenesis experiments, explain the impaired interaction of the MT-MMPs with TIMP-1. Docking experiments with proMMP-2 show some exposed loops including the MT-loop of cdMT3-MMP involved in the interaction with the proMMP-2 pro-domain in the activation encounter complex. This model might help to understand the experimentally proven importance of the MT-loop for the activation of proMMP-2.

Keywords: hydroxamate inhibitor; batimastat; matrix metalloprotease; membrane-type MMP

Abbreviations used: MMP, matrix metalloproteinase; MT, membrane-type.

INTRODUCTION
Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases, which are capable of collectively degrading all kinds of extracellular matrix proteins, but also can process a number of bioactive molecules.¹ The MMPs play an important role in tissue remodeling associated with various physiological and pathological processes such as morphogenesis, angiogenesis, tissue repair, arthritis and tumor invasion.²⁴ According to their cellular localization, the 23 human MMPs can be subdivided into 16 secreted and seven membrane bound MMPs. The latter MMPs include (i) the type-II transmembrane cysteine array MMP-23,⁷,⁸ (ii) the glycosyl phosphatidylinositol-attached MMPs 17 and 25/membrane-type MT-MMPs 4 and 6,⁶,¹⁰ and (iii) the type-I transmembrane MMPs 14, 15, 16, and 24/MT-MMPs 1, 2, 3, and 5.¹¹ In addition, some secreted MMPs such as (pro)MMP-2 are recruited to and activated at the cell surface to make focal proteolysis.¹² It has been proposed that this surface binding (e.g. via integrin interaction) might allow the fine control of ECM degradation near the cell surface of tumor cells.¹³ On the other hand, the location of membrane-type MMPs at the plasma membrane situates them in a position suitable to promote tumor invasion.

The MT-MMPs 1, 2, 3 and 5 play a dual role in cell surface proteolysis, in that they are able to cleave a variety of extracellular matrix components in vitro and to shed membrane-bound receptors,¹⁴ but are also capable of activating proMMP-2 (pro-gelatinase A).¹³ MT1-MMP seems to be the major activator of proMMP-2, mainly via presentation of proMMP-2 by a MT1-MMP-TIMP-2 “receptor.”¹⁵-¹⁸ However, the catalytic domains of the full-length molecules of the other MT-MMPs¹⁹-²³ have also been shown in vitro or expressed in mammalian cells, respectively, to activate proMMP-2. Apparently, MT2-MMP is able to perform this activation in a TIMP-2-independent manner.²⁴ The proMMP-2 activation ability has been associated with a characteristic loop insertion (the MT-specific loop)²⁵ between strands II and III of the catalytic domain,²⁶ and, accordingly, the inefficiency in proMMP-2 activation of the classical MMPs and MT-MMPs ⁴,⁵³ and ⁶,⁶,²⁸ with the lack of this loop. The more severe phenotype exhibited by MT1-MMP knock-out mice compared with MMP-2 deficient mice⁵⁰,³¹ indicates, however, that the MT-MMPs 1, 2, 3 and 5 play a much broader role than simply to activate proMMP-2.
Figure 1. (a) Ribbon plot of cdMT3-MMP (yellow) displayed in stereo view (standard orientation). CdMT3-MMP, shown together with the bound batimastat inhibitor, is superimposed with the catalytic domains of MMP-1 (PDB accession code 1CGL), MMP-3 (1UEA), MMP-7 (1MMP), MMP-8 (1JAN), MMP-11 (1HV5), MMP-12 (1JK3), MMP-13 (456C), MMP-14 (1BQQ, pink), and MMP-2 (1QIB) and MMP-9 (1GKC) with the fibronectin type II repeats deleted. The catalytic and the structural zinc ion and the two bound calcium ions are displayed as pink and green spheres, respectively. The three His residues liganding the catalytic zinc and the characteristic Met264 are shown with all non-hydrogen atoms. The MT-loops of MT1-MMP and MT3-MMP significantly protrude away from the molecular surface compared with the sII-sIII bridges of the other MMPs. The Figure was made with BOBSCRIPT and Raster3D. (b) and (c) Solid surface representation of the catalytic domain of MT3-MMP (b) and MT1-MMP (c) (1bqq). The molecules are shown in their front view in stereo (standard orientation), with a proMMP-2 derived Ser-Cys-Asn*Leu-Phe-Val heptapeptide modelled into their active-site clefts. The coloring of the surface is according to the calculated negative and positive electrostatic potentials contoured from -10 kT/e (red) to +10 kT/e (blue). Noteworthy are the different shapes and charge distributions of the exposed MT-specific loops (left upper edge of the molecules). The Figure was made with Swiss-PDBViewer and POV-Ray/MegaPov. (d) Alignment of the MT3-MMP catalytic domain sequence with the catalytic domain sequences of other MMPs of known molecular structure, based on topological equivalence. Residues involved in binding of the catalytic and the structural zinc and of the two to three (in a few other MMPs) calcium ions are marked with Z1, Z2, C1, C2 and C3, and helices and strands of cdMT3-MMP are indicated by cylinders and arrows. The residue numbers refer to the sequence of the translated preproMT3-MMP molecule.22,23

† POVRAY (http://povray.org) and MegaPov (http://nathan.kopp.com/patched.htm)
While MT-MMPs 1 and 2 are expressed in a variety of adult human tissues, expression of the MT-MMPs 3 and 5 seems to be restricted normally to the brain and the heart. MT3-MMP, like MT1-MMP, is highly expressed in cancerous tissues compared with normal tissues. It has been found in renal carcinoma, astrocytic tumors and melanoma, while it was not detected in breast and thyroid carcinomas, which expressed MT1-MMP. MT3-MMP has been shown to possess the potential to promote melanoma invasion by forming a complex with melanoma chondroitin sulfate proteoglycan, a cell surface proteoglycan expressed early in melanoma progression.

MT3-MMP (originally described by Takino and co-workers), similar to the related MT-MMPs, is translated as a multidomain 607-residue polypeptide chain, consisting of a short signal peptide, a prodomain linked via a multiple basic furin cleavage site with the catalytic domain, a long linker, a hemopexin-like domain, a transmembrane helix and a short cytoplasmic tail. Miyazaki and colleagues later published the slightly different cDNA sequence from human brain, which now seems to be generally accepted as the human MT3-MMP. Besides, a soluble human MT3-MMP species formed by alternative splicing has been described. MT3-MMP bears particularly strong sequence homology with MT5-MMPs. Like MT1-MMP, it is inhibited by TIMP-2 but not by TIMP-1. More efficiently than MT1-MMP does MT3-MMP digest type III collagen into typical one-and-three-quarter fragments, while it cleaves type I collagen only at the Gly4-Ile5 bond of the triple helical portion of the α2(I) chain.

Previously, we have determined the structure of the MT1-MMP catalytic domain in complex with TIMP-2 and found some characteristic differences such as the MT-specific loop compared with the classical MMPs. Here we present the crystal structure of the related cdMT3-MMP in complex with the broad spectrum inhibitor batimastat. This structure hopefully will help in the rational design of more specific inhibitors, which might be useful for differentiating studies on the MT-MMPs.
RESULTS AND DISCUSSION

Overall structure

The MT3-MMP crystals contain one copy of the complex formed between the catalytic domain of MT3-MMP (cdMT3-MMP) and the hydroxamic acid inhibitor batimastat (BB-94) per asymmetric unit. The first five residues of this construct (Met1-Tyr120MT3-Ala121MT3-Leu122MT3-Thr123MT3); the superindex MT3 indicates MT3 residues numbered according to proMT3-MMP; in the following paragraphs, the superindices pro2, MT1, MT2, MI, M8, T1 and T2 will be used to refer to residues of proMMP-2, MT1-MMP, MT2-MMP, MMP-1, MMP-8, TIMP1 and TIMP-2, respectively) are not defined by electron density, although there is enough empty space in the crystal to accommodate it in an unconstrained manner. This indicates that the Tyr120MT3 α-amino terminus of mature MT3-MMP (and thus, in general, the amino termini of the MT-MMPs) is inherently flexible and not involved in a surface-located salt bridge with Asp281MT3 as observed in the collagenases, which is probably due to the two residues shorter amino terminus of activated MT-MMPs (Figure 1(d)) or the presence of the artificial methionine of our construct. Also the last 15 amino acid residues of this construct, which in the full-length molecule would represent part of the 50-residue inter-domain linker, are not defined by electron density.

As in other MMPs, the MT3-MMP active-site cleft, which in the standard orientation (Figure 1) extends horizontally across the molecule and binds peptide substrates from left to right, separates the smaller "lower subdomain" from the larger "upper subdomain". The upper subdomain encompasses a five-stranded, highly twisted β-sheet, flanked by three surface loops on its convex side and by two long regular α-helices on its concave side (Figure 1(a)). Four of the five β-strands are aligned in a parallel fashion, with only the cleft-sided "edge strand" sIV running in opposite direction. This latter strand is linked to the central strand sIII via the characteristic "S-shaped double loop" (S-loop), which is fixed via the "structural zinc" (Zn2, Figure 1(a)) and the first bound calcium ion (Ca1) to the underlying β-sheet. This S-loop extends into the cleft-sided "bulge", which continues into the antiparallel edge sIV, both together forming the alignment segment for binding peptidic substrates and inhibitors (see Figures 1 and 2). The end of the sII-sIII connecting segment, also called MT-loop due to its unique presence in MT-MMPs (see below), together with the sIV-sV loop sandwich the second calcium ion (Ca2).

After strand sV, the chain passes through the large open sV-hB loop, another segment of high variability (Figure 1(a)) and a source of specificity before entering the long horizontally extending "active-site helix" hB. This helix provides the first and the second His residue of the metzincin characteristic zinc-binding motif (His246MT3 and His250MT3), using the proenzyme numbering of MT3-MMP, together with the "catalytic" Glu247MT3; see Figure 1(a) and (d)). Helix hB ends at Gly253MT3, where the chain bends down, provides the third zinc ligand (His256MT3), passes the 1,4-tight "Met-turn" Ala262MT3-Ile263MT3-Met264MT3-Ala265MT3, forms with Pro266MT3-Phe267MT3-Tyr268MT3 the outer wall of the S1'-pocket, and turns through the specificity loop back to helix C.

The overall fold of the MT3-MMP catalytic domain is very similar to that of other MMPs of known structure. A total of 151 α-carbon atoms can (within 1.5 Å distance, and with an r.m.s. deviation of 0.64 Å) be superimposed with equivalent α-carbons of MT1-MMP, compared with, for example, 140/147 α-carbons of MMP-15/MMP-8 with rms deviations of 0.66/0.63 Å, i.e. the overall fold is only marginally more similar within the MT-MMP subfamily. Interesting deviations between MT1- and MT3-MMP are observed in the open sV-hB loop, the MT-loop and in the specificity loop (Figure 1(a)). According to the topology-based sequence alignment (Figure 1(d)), 68% of the equivalent cdMT3-MMP residues (Tyr120MT3-Gly291MT3) are identical with those of MT1-MMP. Among all human MMPs, cdMT3-MMP should, with 80% identity, be most similar to cdMT5-MMP21.

Active-site cleft and batimastat/substrate binding

The active-site cleft of MT3-MMP is similar to that of MT1-MMP (Figure 2). The S3 pocket of MT3-MMP, formed by His208MT3, Tyr210MT3 and Ser279MT3, differs only by a Ser/Thr replacement. Therefore, MT3-MMP might show a similar preference for Arg residues at P4 in the absence of P3-Pro residues. The hydrophobic S2 subsite is bordered by Glu255MT3, so that its shallow groove could particularly well accommodate short hydrophobic side-chains (such as Cys, see below), but also Arg/Lys at P2; the corresponding Glu249MT1 side-chain of MT1-MMP (see Figure 2) turns away from the S2 subsite, probably due to the presence of the amino terminus of the MT1-MMP catalytic domain co-crystallized with TIMP-225. The S1 cleft of MT3-MMP is, as that of MT1-MMP, bounded by the flat sides of the side-chains of His208MT3 (one of the ligands of the structural zinc) and Phe205MT3 (Figure 2), distinguishing it from the S1 sites of most other MMPs.
The entrance to the S1' subsite is mostly hydrophobic as in the other MMPs. In contrast to the MT1-MMP, however, the MT3-MMP S1'-subsite is not a continuous pore but a limited pocket, bounded at its bottom by the Met271MT3 side-chain, which in turn seems to be squeezed between the side-chains of Ile263MT3 and Gln269MT3. The equivalent Met264MT1 side-chain of MT1-MMP, packed between similar neighbors, is rotated out of the pocket and gives way to the S1' pore, possibly due to lack of a laterally stabilizing Tyr270MT1-Asn234MT3 side-chain stack as found in MT3-MMP. This S1' difference is also reflected in main-chain deviations of the embracing specificity loop (Figure 1). We note that the equivalent Arg222MMP-8 side-chain of MMP-8MT3 occludes the S1' pocket in a similar manner as observed in MT3-MMP. However, a recent MMP-1/inhibitor structure shows that long side-chains in S1' are able to displace the occluding Arg214MT1 in MMP-1MT1. Such flexibility in pocket size may also be assumed for MT3-MMP.
The S2' subsite is bordered by the protruding benzyl side-chain of Phe205MT3 and the integrated benzyl group of Phe267MT3, provided by the bulge-edge segment and by the S1' wall forming segment (see Figure 2(a) and (b)). The S2' groove of MT1-MMP, with identical residues, is very similar. With the exception of MT4-MMP, both Phe residues are conserved among the MT-MMPs, but are replaced by medium-sized and/or more polar residues in the classical MMPs. Thus, the inability of MT3-MMP to cleave, like MT1-MMP, collagen type I into three-quarter and one-quarter fragments cannot be explained by significant structural differences in the active site cleft, but must rather reside in different exosite interactions, or result from a combination of multiple subtle contacts.

The bound batimastat inhibitor is well defined by appropriate electron density (Figure 2(a)). It coordinates the catalytic zinc ion in a bidentate manner via the hydroxyl (distance 2.24 Å) and the carbonyl oxygen (distance 1.87 Å) of the hydroxamic group. Both oxygen atoms, together with the three ligating His nitrogen atoms (Zn distances between 2.02 and 2.16 Å), make up a trigonal-bipyramidal coordination sphere around this zinc ion. The peptide-like backbone is bound similar to that observed in the corresponding batimastat complex with MMP-8, i.e. inserted between the bulge-edge strand and the wall-forming segment, under formation of five inter-main-chain hydrogen bonds (distances between 2.79 and 2.98 Å). The thiophene ring, in α-position to the hydroxamate moiety, is located above the catalytic zinc, but at a mean distance of 4.5 Å, i.e. too far away for a favorable half-sandwich complex. The isopropyl group of batimastat, mimicking a P1' "Leu" side-chain, extends into the S1' pocket, still leaving space for a few more solvent molecules. The P2' phenyl ring forms both intra- (with the thiophene ring) as well as intermolecular contacts (with Phe205MT3 and Phe267MT1), giving rise to a smooth surface spanning the primed region of the cleft.

The MT-specific loop and its possible involvement in proMMP-2 activation MT3-MMP shares with MT1-MMP (and probably with MT2- and MT5-MMP) the characteristic MT-loop that connects strands sII and sIII and forms a dominating protuberance on the molecular surface (see Figure 1). Here, 14 residues of the MT3-MMP chain between Glu168MT3 and Asp183MT3 replace seven residues in the "classic" MMPs (Figure 1(d)) and the non-activating MT4-MMP, and ten residues in MT6-MMP. The corresponding loop of MT3-MMP is of identical length, whereas the MT-loops of MT1- and MT2-MMP are one residue longer and (in the middle part) of different sequence. According to mutation/deletion/kinetic experiments of Murphy and coworkers,20 the second half of the equivalent MT-loop of MT1-MMP is not particularly important, whereas the specifically structured N-terminal part seems to be required for efficient activation of proMMP-2.

It is thus peculiar that just the N-terminal part of the MT3-MMP loop (Glu169MT3, Val170MT3, Pro171MT3, Tyr172MT1) does not follow the MT1-MMP track (Glu161MT1, Val162MT1, Pro163MT1, Tyr164MT1) but rather that of the classical MMPs, with Pro163MT1 superimposing with Val170MT3 and the Tyr164MT1 side-chain pointing in a different direction than the sequentially equivalent Tyr172MT3, due to an extra bulge at Val162MT1 and differing intramolecular packing. It should be mentioned that in both, the MT1-MMP-TIMP-2 structure25 as well as in this MT3-MMP-batimastat structure, the MT-loop protrudes into empty intermolecular gaps, relatively unconstrained by crystal contacts. The cdMT2-MMP from man has been shown to activate proMMP-2,24 and human and mouse MT2-MMPs expressed in COS cells were reported to be active.49 The same group in a later study found, however, that human MT2-MMP is defective, but that the cell-associated proMMP-2 activation function can be recovered by replacement of the human Glu181MT2-Val182MT2-Pro183MT2-Tyr184MT2-Glu185MT2 by the murine MT2-MMP Glu181MT2-Val182MT2-Ser183MT2-Tyr184MT2-Asp185MT2 motif.50 According to TyrMT1 → Ser mutation experiments of English and colleagues,20 the contained TyrMT1 residue seems to play some role in the proMMP-2 activation, possibly acting as a molecular switch upon docking to proMMP-2. The different phenole placement in the MT1- and the MT3-MMP structures does not explain such a function, however, indicating that the mechanism of the MT-loop involvement in proMMP-2 activation is more complex.

The strong correlation of the presence of the MT-loop with the capability of activating proMMP-2, but also the mutation experiments mentioned above50 suggest a (direct or indirect) involvement of the MT-loop in proMMP-2 activation. The MT1-MMP catalyzed proMMP-2 activation starts with a cleavage in the Glu63pro2-Ser64pro2-Cys65pro2-Asn66pro2-Leu67pro2-Phe68pro2 segment of proMMP-2, i.e. in the loop connecting helices 1 and 2 of the prodomain.51 The activation intermediate is then further processed and the final cleavage at Asn109pro2-Tyr110pro2 through another MMP-2 molecule yields active MMP-2.17,52,53 In both proMMP-2 structures51,54 the primary cleavage segment is in a position and conformation not accessible for an attacking MT1-MMP, and the residues flanking the primary cleavage site, in particular those C-terminal of it, exhibit enormously high temperature factors. This indicates that the cleavage segment is quite flexible and can adapt to an attacking MT-MMP molecule. Modeling studies show that the primed side segment must partially unfold up to Lys75pro2 and adopt an MT-MMP-susceptible conformation55 (see model in Figure 1(b) and (c)), while the relatively rigid non-primed side Cys60pro2-Cys65pro2 loop must slightly rearrange in order to become attackable by the approaching MT-MMP.56 Manual docking experiments show that a refolded scissile proMMP-2 segment could insert into the
active-site cleft of MT1/3-MMP in a productive manner, under simultaneous touch of helix 2 by the S-loop, insertion of the end of helix 1 below the S-loop, and contacts between the MMP-2 segment becoming the N terminus and the MT-loop (Figure 3(a)). In this way, the MT-loop could directly or indirectly stabilize the encounter complex facilitating proMMP-2 activation. Also other encounter complexes are conceivable, however, e.g. under association of both hemopexin-like domains. Interestingly, a hemopexin-like domain-dependent activation has been described for the MT2-MMP-dependent activation of proMMP-2 and the MT1-MMP-dependent activation of proMMP-13.

TIMP-1 docking to MT-MMPs shows obstacles for interaction

Previously we have shown for a cdMMP-3-TIMP-1 and for a cdMT1-MMP-TIMP-2 complex that the wedge-shaped TIMPs bind with their flexible edge consisting of six loops/segments into the entire active-site cleft of their cognate MMPs. The TIMPs mainly interact through their N-terminal segment and the disulfide connected C-D loop, but make a number of contacts through the peripheral sA-sB loop and the two C-terminal loops. A superposition of both experimental complexes on the basis of the cdMMPs shows that the relative orientations of both cdMMPs and TIMPs differ considerably, what seems to be an inherent, characteristic difference between both TIMPs (Figure 3(a)). As a consequence, the C-terminal Cys132-T1→Cys137-T1 loop of TIMP-1 gets much closer to the sV-hB loop of the cognate MMP. In all MT-MMPs, the sV-hB loop is, however, longer for three residues (Figure 1(d)) and bulges out toward the approaching TIMP (see Figure 3(a)). Docking studies with TIMP-1 and MT3-MMP show that in particular Asn234MT3 and His235MT3 would clash with Leu133T1 and Ser134T1. Favorable interactions here would require conformational adaptations, presumably on the cost of free energy of binding.

On the other hand, the favorable hydrophobic contacts between the TIMP-2 patch formed by Ile157T2 and Trp151T2 with Phe260MT1 (Phe267MT3) would not be possible with TIMP-1 (Figure 3(b)). In our modeled TIMP-1-MT3-MMP complex, only the hydrophobic part of the Glu156T1 side-chain would get into contact with Phe267MT3 (Phe is conserved in all human MT-MMPs except for MT4-MMP, where it is a Tyr). Furthermore, an MT1/3-MMP complex with TIMP-1 would lack the favorable interactions made by the extended sA-sB loop of TIMP-2, which in the MT1-MMP-TIMP-2 complex slots into the surface groove left by the MT-loop, the side-chains of Asp212MT1 and Phe250MT1, and the S-loop of MT1-MMP. The importance of these interactions for the MT-MMP-TIMP-2 complex stability is shown by the 40-fold reduction in the apparent K_i value of the Tyr36T2→Gly sA-sB loop tip mutants (of N-TIMP-2) for association with MT1-MMP. These interactions mediated through the sA-sB loop might also pull the "left" side of TIMP-2 (Figure 3(a)) towards the MT1-MMP molecule, thus preventing the approach of the "right" side, which in the modeled TIMP-1 complex shows clashes (see above). In summary, the crystal structures of MT1- and MT3-MMP are not in agreement with the favorable binding of TIMP-1, somewhat explaining the extremely low association reaction/affinity.

When we had completed this manuscript, we became aware of a new paper describing a triple mutant rendering TIMP-1 as active against MT1-MMP as other TIMPs. The critical replacement is that of Thr98T1, which in our model faces a solvent-exposed cavity formed by the molecular MT1/3-MMP-TIMP-1 interface and just touches the side-chains of Pro266MT1 and Phe267MT3 (see Figure 3(b)), by Leu98T1. In essence, the longer leucine side-chain in this position may interact more intimately with Pro266MT1 and may also touch His256MT1 and Phe267MT3, thus forming a much better hydrophobic interaction with MT1/3-MMP. Interestingly, Thr98T1, which is located in the E-F loop of TIMP-1, is (because of the different loop conformation, but also due to different chain lengths) topologically equivalent to Leu100T2 (Figure 3(b)). This makes the favorable effect of the Thr→Leu replacement somewhat conceivable, but not its extent. The multiple contacts of the inherently flexible TIMP loops make the assessment of replacement effects extremely difficult.

This mutant is remarkable in that it shows that small apparently insignificant changes in the TIMPs can shift the inhibitory answer from "no" to "yes".
Figure 3. (a) Model of the encounter complex between cdMT3-MMP and proMMP-2. MT3-MMP is shown as orange ribbon with the MT-loop in surface representation and the zinc and calcium ions in pink and green, respectively. The MT-MMP cleavage site of the prodomain (grey) of proMMP-2 (PDB code: 1CK7) was modeled into the active site of MT3-MMP (see the text). The catalytic domain, the fibronectin type-II repeats, the linker and the hemopexin-like domain are shown in green, purple, blue and yellow, respectively. The Figure was made with DS ViewerPro (Accelrys Inc.). (b) and (c) Stereo view of the experimental complex formed between cdMT1-MMP (blue) and TIMP-2 (gray) and a modeled (hypothetical) complex formed between cdMT3-MMP (yellow) and TIMP-1 (red). The position of TIMP-1 was obtained by superimposing the experimental cdMMP-3/TIMP-1 complex on the cdMT1-MMP/TIMP-2 complex on the basis of the MMPs. Finally, cdMMP-3 was deleted and cdMT3-MMP was superimposed on cdMT1-MMP (b) both complexes are shown with their front side, the active site clefts point toward the bottom. The sA-sB and sG-sH loops of TIMP have been labeled, and the sV-hB loops and the MT-loops of the MT-MMPs have been indicated. The Figure has been made with Swiss PDBViewer. (c) Stereo view of the close-up of the central TIMP binding site of the experimental cdMT1-MMP (blue)-TIMP2 (gray) complex and the modeled cdMT3-MMP (orange)-TIMP-1 (green) complex. The Figure was made with DS ViewerPro (Accelrys Inc.).
MATERIALS AND METHODS

Cloning, expression, refolding and purification of cdMT3-MMP

For the PCR amplification of the cDNA encoding cdMT3-MMP (from nucleotide 470 to nucleotide 1042), the MT3-MMP plasmid, kindly provided by H. Sato, was used as a template together with two synthetic nucleotide primers designed according to the known cDNA sequence (Accession number D50477). The sense primer 5’-GAATTCATATGTATGCAGTGCAGAA-3’ and the antisense primer 5’-AACTGCAAGCTACGGTGTTGGGGCCTGT-3’ were designed to incorporate NdeI or PstI sites (underlined) and an N-terminal methionine, respectively. The amplified PCR fragment was digested with these restriction enzymes and cloned into the pCTBR2 vector. The resulting plasmid was called pT7cdMT3.

BL21 (DE3) cells were transformed with the pT7cdMT3 plasmid and grown as described. The cdMT3 expression was induced by adding 0.5 mM iso-propyl-β-D-galactopyranoside for three hours when the cell density reached an A600 of 0.6. The cells were harvested by centrifugation and resuspended in lysis buffer (50 mM Tris-HCl (pH 7.5), 100 KCl, 0.1% Brij). The lysate was sonicated and the inclusion bodies were collected by centrifugation, and washed three times each with 50 mM Tris-HCl (pH 7.5), 2 M NaCl, 0.1% Brij, and with 50 mM Tris-HCl (pH 7.5).

Washed inclusion bodies were solubilized by stirring for two hours at 22°C in 50 mM Tris-HCl (pH 8.5), 8 M urea, and 0.1% β-mercaptoethanol. The denaturation mixture was dialyzed for four hours each at 4°C against a 50 mM Tris-HCl (pH 8.5) buffer containing 100 mM NaCl, 10 mM CaCl2, 100 µM ZnCl2, and urea at progressively decreasing concentrations in order to slowly eliminate urea. Additional dialyses were performed for 24 hours against Tris assay buffer (50 mM Tris-HCl (pH 7.4), 100 mM NaCl, 5 mM CaCl2, 1 µM ZnCl2). The refolded cdMT3 (with residues Met1-Tyr120MT3-...-Pro307MT3) was concentrated by ultra-filtration (3-kDa cutoff, YM3 membrane, Amicon), and the precipitate was removed by centrifugation after incubation overnight at 4°C. The supernatant was concentrated against the reservoir at room temperature. Batimastat/BB-94, a broad spectrum MMP-inhibitor with a Ki for MMP-1, -2 and -3 of about 1 nM, was a generous gift from British Biotech. After a few days, brick-like crystals (200 µm X 200 µm X 100 µm) formed belonging to the tetragonal space group P4322 (Table 1). With one monomer of 21.3 kDa per asymmetric unit, these crystals have a solvent content of 47% (v/v).

Crystallization, data collection, and structure refinement

The human cdMT3-MMP-batimastat complex was crystallized using the sitting-drop vapor-diffusion technique. An aliquot of 1 µl protein/inhibitor solution (50 mM Tris-HCl (pH 8.5), 100 mM NaCl, 5 mM CaCl2, containing 10 mg/ml cdMT3-MMP and 0.5 mg/ml batimastat) was mixed with 1 µl reservoir buffer (100 mM Tris-HCl (pH 8.7), 1.1 M K/Na-tartrate) and concentrated against the reservoir at room temperature. Batimastat/BB-94, a broad spectrum MMP-inhibitor with a Ki for MMP-1, -2 and -3 of about 1 nM, was a generous gift from British Biotech. After a few days, brick-like crystals (200 µm X 200 µm X 100 µm) formed belonging to the tetragonal space group P4322 (Table 1). With one monomer of 21.3 kDa per asymmetric unit, these crystals have a solvent content of 47% (v/v).

After adding 20% (v/v) glycerol to the mother liquor, a first data set to 2.2 Å resolution was collected from a crystal cooled to 100 K in a nitrogen stream on a MAR-Research (Hamburg, Germany) 345 image plate detector by using monochromatized CuKα radiation produced by a conventional rotating anode. The data set was processed with the HKL package. The orientation and position of the human cdMT3-MMP-batimastat complex was determined by Patterson search techniques using the program AMoRe and the catalytic domain of human MT1-MMP (PDB accession code 1BQQ; residues: Ile14-Ser287) as a search model. A second dataset to 1.80 Å resolution was collected with a flash-cryo-cooled crystal at a wavelength of 1.050 Å at the beamline BW6 of the Deutsches Elektronen Synchrotron (DESY) in Hamburg, Germany, employing a Mar Research CCD detector. The structure of the human cdMT3/batimastat complex was refined with XPLOR using the Engh & Huber parameters. The Rfree validation was based on a subset of 4.9% of the reflections omitted during the entire refinement procedure. In later stages of refinement, the maximum-likelihood algorithm implemented in the program CNS was used. Each round of refinement was followed by manual model rebuilding using the programs O and MAIN.
Table 1. X-ray data and final refinement statistics

<table>
<thead>
<tr>
<th>Data Category</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystal cell constants:</td>
<td>(a = 51.21 , \text{Å}, , b = 51.21 , \text{Å}, , c = 149.37 , \text{Å}, , \alpha, \beta, \gamma = 90^\circ)</td>
</tr>
<tr>
<td>Space group: tetragonal</td>
<td>P4,22</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>16.60-1.80</td>
</tr>
<tr>
<td>Mosaicity (°)</td>
<td>0.4</td>
</tr>
<tr>
<td>Reflections measured</td>
<td>119,029</td>
</tr>
<tr>
<td>Reflections unique</td>
<td>18,455</td>
</tr>
<tr>
<td>(I / \sigma), overall</td>
<td>5.5</td>
</tr>
<tr>
<td>(I / \sigma) (1.9-1.8 Å)</td>
<td>2.2</td>
</tr>
<tr>
<td>(R_{merge}) (%) overall</td>
<td>8.3</td>
</tr>
<tr>
<td>(R_{merge}) (%) (1.9-1.8 Å)</td>
<td>32.7</td>
</tr>
<tr>
<td>Completeness (%) overall</td>
<td>96.7</td>
</tr>
<tr>
<td>Completeness (1.9-1.8 Å)</td>
<td>91.1</td>
</tr>
<tr>
<td>Number of non-hydrogen protein atoms</td>
<td>1346</td>
</tr>
<tr>
<td>Number of inhibitor atoms</td>
<td>32</td>
</tr>
<tr>
<td>Number of water molecules</td>
<td>116</td>
</tr>
<tr>
<td>Reflections used for refinement</td>
<td>17,555</td>
</tr>
<tr>
<td>(R) value (%)</td>
<td>20.8</td>
</tr>
<tr>
<td>(R_{merge}) (%) from 4.9% of the data</td>
<td>23.6</td>
</tr>
<tr>
<td>R.m.s. standard deviation</td>
<td></td>
</tr>
<tr>
<td>Bond lengths (Å)</td>
<td>0.014</td>
</tr>
<tr>
<td>Bond angles (deg.)</td>
<td>1.712</td>
</tr>
<tr>
<td>R.m.s. (B) (Å²)</td>
<td>3.907</td>
</tr>
<tr>
<td>Mean (B) factor, protein main-chain (Å²)</td>
<td>28.7</td>
</tr>
<tr>
<td>Mean (B) factor, protein side-chain (Å²)</td>
<td>31.1</td>
</tr>
<tr>
<td>Mean V factor, batimastat (Å³)</td>
<td>20.5</td>
</tr>
<tr>
<td>Mean (B) factor, solvent (Å²)</td>
<td>37.3</td>
</tr>
<tr>
<td>(\Phi, \Psi) angle distribution</td>
<td></td>
</tr>
<tr>
<td>In core regions</td>
<td>119 (92.2%)</td>
</tr>
<tr>
<td>In additionally allowed regions</td>
<td>10 (7.8%)</td>
</tr>
</tbody>
</table>

\(R_{merge} = \frac{\sum_{h} \sum_{i} |I(h, i) - \langle I(h)\rangle/\sum_{h} \sum_{i} I(h, i)|}{\sum_{h} \sum_{i} |I(h, i)|} \times 100.\)

\(R_{value} = \frac{\sum_{h} \sum_{i} |F_{obs} - |F_{calc}|/\sum_{h} \sum_{i} |F_{obs}|.\)

\(R_{free}\) is the cross-validation \(R\) factor computed for the test set of reflections (4.9% of total).

R.m.s. \(B\) is the r.m.s. deviation of the \(B\)-factor of bonded atoms.

As defined by PROCHECK, the percentage distribution is given in parentheses.

The final refinement cycles with REFMAC71 led to a model with an \(R\)-value of 20.7. The final model consists of segment Gly\textsuperscript{124MT3}-...-Pro292MT3 (cdMT3-MMP), the batimastat inhibitor, 115 water molecules, and two zinc and two calcium ions (Table 1). Except for discontinuous electron density in the MT-specific loop region Leu\textsuperscript{175MT3}-Gly\textsuperscript{178MT3} and the sV-hB region His\textsuperscript{235MT3}-Asp\textsuperscript{236MT3}, the cdMT3-MMP main-chain can be fully traced in continuous electron density. All main-chain angles of non-glycine residues fall into the most favored or allowed regions of the Ramachandran plot as defined by PROCHECK.72

Protein Data Bank accession code

The structure of the cdMT3-MMP/batimastat complex reported here has been deposited in the RCSB Protein Data Bank (PDB code: 1RM8).
Acknowledgements

This project is funded by the European Commission as SPINE, contract no. QLG2-CT-2002-00988 under the Integrated programme "Quality of Life and Management of Living Resources". The financial support by the SFB469, the Fonds der Chemischen Industrie, the EU projects QLK3-CT-2002-02136 and QLG1-CT-2000-01131 and the Belgian Federation against Cancer is kindly acknowledged. We thank U. Rester, O. Einsle and C. Fernandez-Catalan for their help during data evaluation and Professor R. Huber for his continuous support of the project.

References

43. Bode, W., Gomis-Ruth, E X. & Stocker, W. (1993). Astacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the metzincins. FEBS Letters, 331, 134-140.

